Формы организации живой материи. Цитоплазма и ядро клетки


Биология - наука о жизни (от греч. биос - жизнь, логос - наука) - изучает закономерности жизни и развития живых существ. Термин «биология» был предложен немецким ботаником Г. Тревиранусом в 1802 г. и французским естествоиспытателем Ж.Ламарком в 1809 г. Биология относится к естественным наукам, так же как химия, физика, астрономия, геология. Современная биология представляет совокупность наук о живой природе. Каждая из биологических наук имеет свои объекты изучения, проблемы и использует различные методы исследования. Биология изучает все формы живых организмов, начиная от вирусов и заканчивая человеком, их строение, функции, развитие, происхождение, связь друг с другом и окружающей средой. Система биологических наук сложна что связано с многообразием форм жизни на Земле. 2



В биологии можно выделить дисциплины, изучающие морфологию, т. е. строение организмов, и физиологию, т. е. процессы, протекающие в живых организмах, и обмен веществ между организмом и средой. К морфологическим наукам относят, например, цитологию, исследующую строение клетки; гистологию - науку о тканях; анатомию - о форме и строении отдельных органов, систем и организма в целом. Различают анатомию человека, животных, растений. Изучением сходства и различий в строении животных занимается сравнительная анатомия. 4


Физиологические науки рассматривают процессы жизнедеятельности (функции) животных и растительных организмов, их отдельных систем, органов, тканей и клеток. Физиологию человека и животных подразделяют на несколько дисциплин, тесно связанных между собой. Выделяют общую физиологию, которая исследует общие закономерности реакции организма и его структур на воздействие факторов внешней среды, и частную специальную, которая изучает механизмы реагирования отдельных классов животных (например, птиц или млекопитающих) или отдельных органов (например, печени или легких) на внешние воздействия. Физиология растений исследует общие закономерности физиолого-биохимических процессов, их сущность и взаимосвязь жизни растения с окружающими условиями. 5


Наука о наследственности и изменчивости живых организмов названа генетикой. В зависимости от объекта исследования выделяют генетику растений, животных, микроорганизмов и человека. Изучением закономерностей индивидуального развития занимается эмбриология. Основная задача экологии - исследование взаимодействия между организмами и окружающей средой, позволяющей им выживать, развиваться и размножаться. Антропология - наука о происхождении человека и его рас. Эта наука не только биологическая, но и социальная, так как понимание биологической эволюции человека невозможно без изучения закономерностей развития человеческого общества. 6


Для современной биологии характерны высокая специализация дисциплин, входящих в нее, и комплексное взаимодействие с другими науками, например химией, физикой, математикой, и появление новых сложных дисциплин. Появление новых химических и физических методов исследования в биологии привело к возникновению таких наук, как биохимия, биофизика, молекулярная биология. Биохимия изучает химический состав живых организмов, превращение веществ в процессе их жизнедеятельности; биофизика - физические свойства и процессы в отдельных органах, тканях, клетках и организма в целом. Молекулярная биология исследует основные свойства и проявления жизни на молекулярном уровне. Молекулярная биология возникла в начале 1950-х гг. ХХ в. как результат накопления знаний о структуре и функциях белков и нуклеиновых кислот. Использование комплексных методов исследования позволило изучить структуры и функции генетического аппарата клеток, механизм реализации генетической информации и т.д. Возникли новые дисциплины, такие как молекулярная генетика, молекулярная вирусология и др. 7


Важное место в биологии занимают как теоретические, так и практические направления исследований. Первые позволяют делать открытия, которые обеспечивают успешное развитие прикладных дисциплин, могут быть использованы человеком в практической деятельности. Учитывая научные достижения и высокие темпы развития биологических наук, можно считать, что с середины ХХ в. начался век биологии. Молекулярно-генетический анализ ДНК применяется для идентификации личности, определения родства и других медицинских целей. Методы генной инженерии используют для получения генетически модифицированных продуктов питания, лечения некоторых заболеваний человека. Биологические науки представляют теоретическую основу медицины, агрономии, животноводства и других отраслей народного хозяйства. Например, знание законов генетики и селекции позволяет выводить новые высокопродуктивные породы животных и более урожайные сорта растений. Открытия, сделанные в генной инженерии, могут быть использованы в биотехнологии (для получения биологически активных веществ, антибиотиков, ферментов, гормональных препаратов и др.), при клонировании. 8


Основные свойства живого Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновых кислот, белков, липидов, углеводов). Химические вещества, входящие в состав живых организмов, имеют более сложное строение, чем неживая природа. В живых организмах 98 % химического состава приходится на четыре элемента: углерод, кислород, азот, водород. В неживой природе кроме кислорода основное значение имеют кремний, железо, магний и др. Химическая организация тесно связана с упорядоченностью структуры и функции любого организма. 9


Основные свойства живого Дискретность и целостность. Жизнь на земле проявляется в виде дискретных форм. Любая биологическая система (клетка, организм, вид и Т.Д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему. Например, в состав организма входят отдельные органы, связанные структур но и функционально в единое целое; любой вид организмов включает отдельные особи. Дискретность строения – основа структурной упорядоченности, создающая возможность самообновления и замены некоторых частей системы без нарушения выполняемых ими функций. Например, «изношенные» органеллы клетки (митохондрии и др.) разрушаются и заменяются новыми; нарушения выполняемых ими функций (клеточное дыхание, синтез АТФ (аденозинтрифосфорной кислоты) и др.) не происходит. 10


Основные свойства живого Структурная организация. Живые системы способны приводить в порядок хаотичное движение молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенной последовательности, направленной на поддержание постоянства внутренней среды - гомеостаза. Сложность структурной организации живого прослеживается на всех уровнях. Открытые биологические системы неразрывно связаны с внешней средой, влияющей на процессы, протекающие в них. Например, в сложных сообществах организмов, называемых биоценозами, существуют многообразные взаимодействия и взаимозависимости между особями одного и разных видов, а также с окружающей их внешней средой. 11


Основные свойства живого Обмен веществ и энергии. Живые организмы - это открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. Основу этого обмена составляют взаимосвязанные процессы ассимиляции и диссимиляции, которые происходят на клеточном уровне. Ассимиляция (уподобление) наблюдается в том случае, когда живой организм поглощает из внешней среды необходимые вещества и превращает их в вещества, специфичные для него. Этот процесс требует затраты энергии. При диссимиляции (процессе распада сложных веществ на простые) выделяется энергия, необходимая для реакции биосинтеза и конечные продукты распада. Обмен веществ обеспечивает постоянство химического состава всех частей организма. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды - гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие нате ферменты, которые составили начальное звено в длинной цепи реакций. 12


Основные свойства живого Самовоспроизведение. Время существования любой биологической системы ограничено. Для поддержания жизни необходим процесс самовоспроизведения, связанный с образованием новых структур, несущих генетическую информацию, которая находится в молекулах ДНК. На молекулярном уровне самовоспроизведение осуществляется на основе матричного синтеза, т.е. новые молекулы синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул. Живые существа, имея ограниченный срок жизни, размножаясь, оставляют после себя потомство. Размножение организмов всех видов, обитающих на Земле, поддерживает существование биосферы. 13


Основные свойства живого Наследственность. Молекула ДНК хранит и передает наследственную информацию благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями. Наследственность - это способность организмов передавать из поколения в поколение при размножении свои признаки, свойства и особенности развития. Изменчивость. Это приобретение организмом новых признаков и свойств. При передаче наследственной информации иногда возникают различные отклонения, которые приводят к изменению признаков и свойств у потомков. Изменчивость обусловливает создание разнообразного материала для отбора наиболее приспособленных организмов к данным условиям среды. Если эти изменения благоприятствуют жизни, они закрепляются отбором. Так появляются новые виды. Наследственная изменчивость способствует эволюции видов. 14


Основные свойства живого Рост и развитие. Живая форма материи характеризуется индивидyaльным и историческим развитием. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит в процессе индивидуального развития - онтогенеза. На определенном этапе онтогенеза осуществляется рост организма (увеличение массы), связанный с репродукцией молекул, клеток и других биологических структур и их дифференцировка (появление различий в структуре и функциях). Рост сопровождается развитием, в результате которого возникает новое качественное состояние объекта, образуются новые структуры, способные выполнять определенные функции. Например, у растений развиваются новые ветви, которые отличаются по структуре от других. В неживой природе, например, рост кристалла происходит за счет добавления подобных структур. Историческое развитие - филогенез - сопровождается образованием новых видов. Таким образом возникло все многообразие живых организмов на Земле. 15


Основные свойства живого Раздражимость и движение. Способность живых организмов избирательно реагировать на внешние воздействия специфическими реакциями называют раздражимостью. Животные более активно реагируют на воздействие внешней среды. Растения реагируют медленнее. Реакция высокоорганизованных животных и человека на раздражение происходит посредством нервной системы и называется рефлексом. Раздражимость - универсальное свойство всех живых существ. Организмы отвечают на воздействие движением. Организмы, не имеющие нервной системы и ведущие прикрепленный образ жизни, в ответ на воздействие раздражителя совершают движения, называемые тропизмами. Например, фототропизм - это реакция на свет у растений. Одноклеточные животные и некоторые клетки многоклеточного организма, например лейкоциты, совершают движения, называемые таксисами. Реакцию на воздействие химических веществ называют хемотаксисом. Неживые объекты реагируют на окружающую среду пассивно. Например, если камень толкнуть, он пассивно сдвинется с места. 16


Основные свойства живого Саморегуляция. Проявление всех основных свойств, характеризующих жизнь, связано с саморегуляцией, т.е. способностью живых биологических систем автоматически поддерживать на определенном постоянном уровне физиологические и другие биологические показатели. При саморегуляции управляющие факторы не воздействуют извне на регулируемую систему, а непосредственно формируются в ней. Механизмы саморегуляции разнообразны и зависят от уровня организации живой материи. Саморегуляция всех процессов жизнедеятельности в организмах осуществляется по принципу обратной связи. Недостаток каких-либо веществ активизирует внутренние ресурсы организма, а их избыток откладывается в запас. Например, повышение концентрации глюкозы в крови приводит к усилению выработки гормона поджелудочной железы - инсулина, уменьшающего содержание сахара в ней. В свою очередь снижение уровня глюкозы в крови замедляет выделение гормона в кровяное русло. Избыток глюкозы под влиянием инсулина превращается в гликоген и откладывается в запас. 17


Уровни организации живой материи Молекулярно-генетический уровень. Любая живая система как бы сложно она не была организована, состоит из биологических макромолекул: белков, нуклеиновых кислот и других органических веществ. На молекулярно-генетическом уровне изучают физико- химические процессы, происходящие в организме (синтез и распад белков, нуклеиновых кислот, липидов, обмен веществ и энергии, копирование генетической информации). Отмечается однообразие дискретных единиц. Четыре азотистых основания входят в состав нуклеиновых кислот. Двадцать аминокислот образуют молекулы белка. Элементарная единица - ген - это участок молекулы ДНК, содержащий определенную генетическую информацию. Элементарное явление - это редупликация (самовоспроизведение) молекул ДНК, которая осуществляется по принципу матричного синтеза. Происходит копирование генетической информации, заключенной в генах, что обеспечивает преемственность и сохранность свойств организмов в последующих поколениях. При редупликации могут возникать различные нарушения, изменяющие генетическую информацию (генные мутации), составляющие основу изменчивости. 18


Уровни организации живой материи Клеточный уровень. Клетка - основная структурная, функциональная и генетическая единица организации всех живых организмов. Элементарное явление - реакции клеточного метаболизма. На клеточном уровне изучают строение клеток и клеточных компонентов. Метаболизм, происходящий на уровне клетки, необходим для осуществления жизни на других уровнях. 19


Уровни организации живой материи Онтогенетический уровень. Элементарной единицей жизни на этом уровне является особь (организм). На онтогенетическом уровне изучают процессы, происходящие в организме, начиная с момента его зарождения и до прекращения жизни: особенности строения, физиологии, механизмы адаптации, поведение и т.д. Изменения, происходящие в течение всего периода индивидуального развития особи, составляют элементарное явление на данном уровне. Характерно многообразие форм, связанное с пространственными комбинациями, которые обусловливают новые качественные особенности организма. Процессы нормального онтогенеза могут быть нарушены необычными воздействиями. Любые физико- химические факторы внешней среды, к которым у организмов нет приспособления, выработанного в процессе эволюции, могут отрицательно влиять на воспроизводство. Например, некоторые химические вещества обладают тератогенным (вызывающим различные уродства) действием. 20


Уровни организации живой материи Популяционно-видовой уровень. Элементарная единица - популяция - это совокупность особей одного вида, населяющих определенную территорию, способных скрещиваться между собой и частично или полностью изолированных от других популяций того же вида. В этой системе происходят элементарные эволюционные преобразования, такие как естественный отбор, мутации. На популяционно-видовом уровне изучают факторы, влияющие на численность популяций, их половой состав, проблемы сохранения исчезающих видов и др. 21


Уровни организации живой материи Биогеоценотический и биосферный уровни. Элементарная структура - биогеоценоз - это исторически сложившиеся устойчивые сообщества растений, животных и микроорганизмов, находящихся в постоянном взаимодействии с компонентами атмосферы, гидросферы и литосферы, т.е. целостная саморегулирующаяся и самоподдерживающаяся система. Биосфера представляет совокупность всех биогеоценозов, образующих единый комплекс, охватывающий все явления жизни на планете. Элементарное явление на биосферном уровне связано с круговоротом веществ и энергии, происходящим при участии живых организмов. 22


Все уровни организации живого тесно соединены между собой, что свидетельствует о целостности живой природы. Без биологических процессов, осуществляемых на этих уровнях, невозможны эволюция и существование жизни на Земле. На определенном этапе эволюционного развития появился человек. В его жизни главную роль играют социальные взаимоотношения. Но человек и все человечество - это составная часть биосферы, его здоровье зависит от умения приспосабливаться к меняющимся условиям среды. Если эта способность проявляется недостаточно, то могут возникнуть заболевания, затрагивающие различные уровни организации жизни (клеточный, онтогенетический). 23


Формы существования живой материи Все живые организмы, обитающие на Земле, разделены на две группы. К первой относят вирусы и фаги, не имеющие клеточного строения. Ко второй - все остальные организмы, для которых разнообразные клетки являются основной структурной единицей. 24



Формы существования живой материи Сложные вирусы имеют наружную оболочку, называемую суперкапсидом. Она построена из плазматической мембраны клетки-хозяина. К сложным вирусам относят вирусы герпеса (1), гриппа, СПИДа и др. Вирусы отличаются друг от друга формой капсида и строением оболочки. 26




Клеточные формы Большинство живых организмов, обитающих на Земле, имеют клеточное строение. В процессе эволюции органического мира клетка оказалась единственной элементарной системой, в которой возможно проявление всех закономерностей, характеризующих жизнь. Учитывая особенности строения клеток, все живые организмы делят на прокариоты и эукариоты. 29


Прокариотические клетки. Это организмы с неоформленным ядром, представленные бактериями и сине- зелеными водорослями. Большинство из них имеют малые размеры (до 10 мкм) И округлую, овальную или удлиненную формы клеток. Генетический материал (ДНК) единственной кольцевой хромосомы находится в цитоплазме и не отделен от нее оболочкой. Этот аналог ядра называют нуклеоидом. 30


Эукариотические клетки. Клетка - это основная структурная, функциональная и генетическая единица организации живого, элементарная живая система. Клетка может существовать как отдельный организм (бактерии, простейшие, некоторые водоросли и грибы) или в составе тканей многоклеточных животных, растений, грибов. 31

Материи - это условное обозначение, принятое для классификации всех живых организмов на нашей планете. Живая природа Земли поистине разнообразна. Организмы могут принимать различные размеры: начиная от простейших и одноклеточных микробов, переходя к многоклеточным существам, и заканчивая самыми крупными животными на земле - китами.

Эволюция на Земле происходила таким образом, что организмы развивались от простейших (в прямом смысле) к более сложным. Так, то возникая, то исчезая, новые виды совершенствовались в ходе эволюции, принимая все более причудливый облик.

Чтобы систематизировать это невероятное количество живых организмов, и были введены уровни организации живой материи. Дело в том, что, несмотря на различия во внешнем виде и в строении, все организмы живой природы имеют общие черты: они так или иначе состоят из молекул, имеют в своем составе повторяющиеся элементы, в том или ином смысле - общие функции органов; они питаются, размножаются, стареют и умирают. Иными словами, свойства живого организма, несмотря на внешние различия, схожи. Собственно, ориентируясь на эти данные, можно проследить, как проходила эволюция на нашей планете.

2. Надмолекулярный или субклеточный. Уровень, на котором происходит структуризация молекул в органоиды клетки: хромосомы, вакуоли, ядро и т. д.

3. Клеточный. На этом уровне материя представлена в виде элементарной функциональной единицы - клетки.

4. Органно-тканевый уровень. Именно на этом уровне образуются все органы и ткани живого организма вне зависимости от их сложности: головной мозг, язык, почка и др. При этом следует иметь в виду, что ткань - совокупность клеток, объединенных общим строением и функцией. Орган - часть организма, в «обязанности» которой входит выполнение четко определенной функции.

5. Онтогенетический или организменный уровень. На этом уровне различные по функциональности органы объединяются в целостный организм. Говоря иначе, этот уровень представлен уже целостным индивидом любого вида.

6. Популяционно-видовой. Организмы или индивиды, имеющие сходное строение, функции и схожий облик и тем самым относящиеся к одному виду, включаются в одну популяцию. В биологии под популяцией понимают совокупность всех особей данного вида. В свою очередь, все они образуют генетически единую и обособленную систему. Популяция обитает в определенном месте - ареале и, как правило, не пересекается с представителями других видов. Вид, в свою очередь, представляет собой совокупность всех популяций. Живые организмы могут скрещиваться и производить потомство лишь в рамках своего вида.

7. Биоценотический. Уровень, на котором живые организмы объединяются в биоценозы - совокупность всех популяций, проживающих на конкретной территории. Принадлежность к тому или иному виду в этом случае не имеет значения.

8. Биогеоценотический. Этот уровень обусловлен образованием биогеоценозов, то есть совокупности биоценоза и неживых факторов (почва, климатические условия) в той области, где биоценоз обитает.

9. Биосферный. Уровень, объединяющий все живые организмы на планете.

Таким образом, уровни организации живой материи включают в себя девять пунктов. Подобная классификация определяет существующую в современной науке систематизацию живых организмов.

Читайте также:
  1. III. Формы борьбы и эффективность действий антиглобалистов.
  2. XI. Временное выбытие совершеннолетнего получателя из организации поставщика стационарных услуг
  3. Автономной некоммерчекой организации «Санкт–Петербургский центр дополнительного профессионального образования»
  4. Административные взыскания: понятие, перечень и наложения
  5. Акты официального толкования норм права: понятие, признаки, классификация.
  6. Акты применения норм права: понятие, классификация, эффектив-ность действия. Соотношение нормативно-правовых и правоприменительных актов.
  7. Амнистия: понятие и признаки. Помилование: понятие, правовые последствия, отличие от амнистии.

Отличие живого вещества от неживого

Живое вещество - вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности.

Живое вещество биосферы характеризуется большим запасом энергии.

Резкое различие между живым и неживым веществом наблюдается в скорости протекания химических реакций (в живом веществе реакции идут в тысячи, а иногда в миллионы раз быстрее).

Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения - белки, ферменты и др. - устойчивы только в живых организмах.

Произвольное движение, в значительной степени саморегулируемое, является общим признаком всякого живого вещества в биосфере.

Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Известно свыше

2 млн. органических соединений, входящих в состав живого вещества, в то время, как количество природных соединений (минералов) неживого вещества составляет около 2 тыс., т. е. на три порядка меньше.

Живое вещество представлено в биосфере в виде индивидуальных организмов, размеры которых колеблются в огромных пределах. Величина самых мелких вирусов не превышает 20 нм (1 нм = 10-9м), самые крупные животные - киты - достигают 33 м в длину, самое большое растение - секвойя - 100 м в высоту.

Химические свойства живого вещества.

Саморегуляция, самовоспроизведение, высокая скорость протекания хим.реакций, активное и пассивное движение.

Физические свойства живого вещества

Высокая приспособленность, раздражимость, рост, развитие, изменчивость.

Формы организации живого вещества: понятие, разновидности.

Живое вещество – вся совокупность тел живых организмов в биосфере. Оно развивается там, где может существовать жизнь, т.е на пересечении атмосферы, литосферы и гидросферы. В неблагоприятных условиях живое вещество переходит в состояние анабиоза.

В процессе эволюции выработалось 2 основные формы организации живого: клеточная и неклеточная, являющаяся производной жизнедеятельности клеток. Среди неклеточных различают симпластическую, синцитиальную формы организации и межклеточное вещество.

5. Межклеточное вещество (внеклеточный матрикс): понятие, характеристика, пример.

Внеклеточным матриксом называют внеклеточные структуры ткани (интерстициальный матрикс и базальные мембраны). Внеклеточный матрикс составляет основу соединительной ткани, обеспечивает механическую поддержку клеток и транспорт химических веществ. Кроме того, клетки соединительной ткани образуют с веществами матрикса межклеточные контакты (гемидесмосомы, адгезивные контакты и др.), которые могут выполнять сигнальные функции и участвовать в локомоции клеток. Так, в ходе эмбриогенеза многие клетки животных мигрируют, перемещаясь по внеклеточному матриксу, а отдельные его компоненты играют роль меток, определяющих путь миграции.

Основные компоненты внеклеточного матрикса - гликопротеины, протеогликаны и гиалуроновая кислота. Коллаген является превалирующим гликопротеином внеклеточного матрикса у большинства животных. В состав внеклеточного матрикса входит множество других компонентов: белки фибрин, эластин, а также фибронектины, ламинины и нидогены; в состав внеклеточного матрикса костной ткани входят минералы, такие как гидроксиапатит; можно считать внеклеточным матриксом и компоненты жидких соединительных тканей - плазму крови и лимфатическую жидкость.

Уровень организации живой материи это функциональное место биологической структуры определенной степени сложности в общей иерар-хии живого.

Выделяют следующие уровни организации живой материи:

1.Молекулярный (молекулярно-генетический). На этом уровне живая материя организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кис-лоты и др.

2.Субклеточный (надмолекулярный). На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные струк-туры.

3.Клеточный . На этом уровне живая материя представлена клетками.

Клетка является элементарной структурной и функциональной единицей живого.

4.Органно-тканевой . На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организ-ма, выполняющая определенную функцию или функции.

5.Организменный (онтогенетический). На этом уровне живая материя представлена организмами.

Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.

6.Популяционно-видовой . На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида.

Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).

7.Биоценотический .

На этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.

8.Биогеоценотический . На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).

9.Биосферный . На этом уровне живая материя формирует биосферу.

Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.

Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджментность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение.

Свойства живых систем

В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот».

Однако до сих пор общепризнанного определения понятия «жизнь» не существует.

Но можно выделитьпризнаки (свойства) живой материи , отличающие ее от неживой.

1.Определенный химический состав . Живые организмы состоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Макроэлементами живых существ являются углерод С, кислород О, азот N и водород Н (в сумме около 98% состава живых организмов), а также кальций Са, калий К, магний Мg, фосфор Р, сера S, натрий Nа, хлор Сl, железо Fе (в сумме около 1–2%).

Химические элементы, которые входят в состав живых организмов и при этом выполняют биологические функции, называютсябиогенными. Даже те из них, которые содержатся в клетках в ничтожно малых количествах (марганец Mn, кобальт Со, цинк Zn, медь Сu, бор В, иод I, фтор F и др.; их суммарное содержание в живом веществе составляет порядка 0,1 %), ничем не могут быть заменены и совершенно необходимы для жизни.

Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке – вода (75–85 % от сырой массы живых организмов) и минеральные соли (1–1,5 %), важнейшие органические вещества – углеводы (0,2–2,0 %), липиды (1–5 %), белки (10–15 %) и нуклеиновые кислоты (1–2 %).

2.Клеточное строение. Все живые организмы, кроме вирусов, имеют клеточное строение.

3.Обмен веществ (метаболизм) и энергозависимость . Живые организмы являются открытыми системами, они зависят от поступ-ления в них из внешней среды веществ и энергии.

Живые существа способны использовать два вида энергии – световую и химическую , и поэтому признаку делятся на две группы: фототрофы (организмы, использующие для биосинтеза световую энергию – расте-ния, цианобактерии) и хемотрофы (организмы, использующие для биосинтеза энергию химических реакций окисления неорганических соединений – нитрифицирующие бактерии, железобактерии, серобактерии и др.).

В зависимости от источников углерода живые организмы делят на: автотрофы (организмы, способные создавать органические вещества из неорганических – растения, цианобактерии), гетеротрофы (организмы, использующие в качестве источника углерода органические соединения – животные, грибы и большинство бактерий) и миксотрофы (организмы, которые могут, как синтезировать органические вещества из неорганических, так и питаться готовыми органическими соединениями (насекомоядные растения, представители отдела эвгленовых водорослей и др.).

Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма – обмена веществ.

Выделяют две составные части метаболизма – катаболизм и анаболизм.

Катаболизм (энергетический обмен, диссимиляция) – совокупность реакций, приводящих к образованию простых веществ из более сложных (гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и др. веществ). Катаболические реакции идут обычно с высвобождением энергии.

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме – аденозинтрифосфата (АТФ) . Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования , т.е. присоединения неорганического фосфата к АДФ. Катаболизм делится на несколько этапов:

1) подготовительный этап (расщепление сложных углеводов до простых – глюкозы, жиров до жирных кислот и глицерина, белков до аминокислот);

2) бескислородный этап дыхания – гликолиз , в результате глюкоза расщепляется до ПВК (пировиноградной кислоты); в итоге образуется 2АТФ (из 1 моль глюкозы).

У анаэробов или у аэробов при его недостатке кислорода протекает брожение.

3) кислородный этап – дыхание – полное окисление ПВК осуществляется в митохондриях эукариот в присутствии кислорода и включает две стадии: цепь последовательных реакций – цикл Кребса (цикл трикарбоновых кислот) и цикл переноса электронов ; в итоге образуется 36АТФ (из 1 моль глюкозы).

Анаболизм (пластический обмен, ассимиляция) – понятие, противоположное катаболизму: совокупность реакций синте-за сложных веществ из более простых (образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза).

Для протекания анаболических реакций требуются затраты энергии. Наиболее важным метаболическим процессом пластического обмена является фотосинтез (фотоавтотрофия) – синтез органических со-единений из неорганических за счет энергии света.

Процессы пластического и энергетического обмена неразрывно связаны между собой.

Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

4.Саморегуляция (гомеостаз). Живые организмы обладают способностью поддерживать гомеостаз – постоянство своего химического состава и интенсивность обменных процессов.

5.Раздражимость. Живые организмы проявляют раздражимость, то есть способность отвечать на определенные внешние воздействия специфическими реакциями.

Реакция многоклеточных животных на раздражение осуществлявляется с участием нервной системы – рефлекс. Реакция на раздражение у простейших животных называется – таксис , выражающийся в изменении характера и направления движения. По отношению к раздражителю выделяют фототаксис – движение под воздействием источника света, хемотаксис – перемещение организма в зависимости от концентрации химических веществ и др.

Основные уровни организации живой природы

Выделяют положительный или отрицательный таксис в зависимости от того, действует раздражитель на организм позитивно или негативно.

Реакция на раздражение у растений – тропиз ,выражающийся в определенный характер роста. Так, гелиотропизм (от греч. «Гелиос» – Солнце) означает рост наземных частей растений (стебля, листьев) по направлению к Солнцу, а геотропизм (от греч.

«Гея» – Земля) – рост подземных частей (корней) по направлению к центру Земли.

6.Наследственность. Живые организмы способны переда-вать неизменными признаки и свойства из поколения в поколение с помощью носителей информации – молекул ДНК и РНК.

7.Изменчивость. Живые организмы способны приобретать новые признаки и свойства.

Изменчивость создает разнообразный исходный материал для естественного отбора, т.е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что в свою очередь приводит к появлению новых форм жизни, новых видов организмов.

8.Самовоспроизведение (размножение). Живые организмы способны размножаться – воспроизводить себе подоб-ных.

Благодаря размножению осуществляются смена и преемственность поколений. Принято различать два основных типа размножения:

— Бесполое размножение (участвует одна особь) наиболее широко распространено среди прокариот, грибов и растений, но встречаются и у различных видов животных.

Основные формы бесполого размножения: деление, спорообразование, почкование, фрагментация, вегетативное размножение и клонирование (клон – генетическая копия одной особи).

— Половое размножение (обычно осуществляется двумя особями) характерно для подавляющего большинства живых организмов и имеет огромное биол.

значение. Вся совокупность явлений, связанных с половым размножением, складывается из 4 основных процессов: образование половых клеток – гамет (гаметогенез); оплодотворение (сингамия – слияние гамет и их ядер) и образование зиготы; эмбиогенез (дробление зиготы и формирование зародыша); дальнейший рост и развитие организма в послезародышевый (постэмбриональный) период.

Биологическое значение полового размножения заключается не только в самовоспроизведении особей, но и в обеспечении биологического разнообразия видов, их адаптивных возможностей и эволюционных перспектив. Это позволяет считать половое размножение биологически, более прогрессивным, чем бесполое. Половое размножение осуществляется с помощью специализированных половых клеток – гамет, имеющих вдвое меньшим числом хромосом, чем соматические клетки.

Женские гаметы называют яйцеклетками, мужские – сперматозоидами. Для некоторых групп организмов характерны так называемые нерегулярные типы полового размножения: партеногенез (развитие зародыша из неоплодотворенной яйцеклетки – пчелы, муравьи, термиты, тля, дафнии), апомиксис (развитие зародыша из клеток зародышевого мешка или неоплодотворенной яйцеклетки у цветковых растений) и др.

9.Индивидуальное развитие (онтогенез). Каждой особи свойственен онтогенез – индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления).

Развитие сопровождается ростом.

10.Эволюционное развитие (филогенез). Живой материи в целом свойственен филогенез – историческое развитие жизни на Земле с момента ее появления до настоящего времени.

11.Адаптации. Живые организмы способны адаптироваться, то есть приспосабливаться к условиям окружающей среды.

12.Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).

13.Целостность и дискретность. С одной стороны, вся живая материя целостна, определенным образом организована и подчиняется общим законам; с другой стороны, любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов.

Любой организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т.е. обособленных или отграниченных в пространстве, но, тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство.

14.Иерархичность. Начиная от биополимеров (белков и нук-леиновых кислот) и заканчивая биосферой в целом, все живое находится в определенной соподчиненности.

Функциони-рование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.

15.Негэнтропия. Согласно II закону термодинамики все процессы, самопроизвольно протекающие в изолированных системах, развиваются в направлении понижения упорядоченности, т.е. возрастания энтропии. В то же время по мере роста и развития живые организмы, наоборот, усложняются, что, казалось бы, противоречит второму началу.

На самом деле это мнимое противоречие. Дело в том, что живые организмы представляют собой открытые системы. Организмы питаются, поглощая при этом энергию извне, выделяют в окружающую среду тепло и продукты жизнедеятельности, наконец, погибают и разлагаются.

По образному выражению Э. Шредингера, «организм питается отрицательной энтропией». Совершенствуясь и усложняясь, организмы вносят хаос в окружающий их мир.

Кроме перечисленных, иногда выделяют физиологические свойства, присущие живому – рост, развитие, выделение и т.д.

Живая материя на Земле представляет собой сложную систему, структуру которой определяет ряд иерархически связанных уровней - от органических молекул до биосферы, - возникших эволюционным путем.

Первый и самый низший уровень организации живой материи - это молекулярный .

На нем выделяют биополимеры, которые не встречаются (или почти не встречаются) в неживой природе, и для которых характерны определенные химические реакции, а также образование комплексов молекул. На молекулярном уровне жизни осуществляются такие процессы как редупликация ДНК, синтез молекул АТФ, катализ и др. Это элементарные явления этого уровня, а элементарными объектами на нем являются биологические молекулы.

Следующий уровень - клеточный . Элементарной единицей на нем выступает клетка.

Для нее характерно проявление почти всех свойств живого: обмен веществ и поток энергии, гомеостаз, размножение и др. Клетка лежит в основе живой материи на Земле, вне ее жизни нет.

Такие уровни организации живой материи как тканевой и органный часто объединяют в один - тканево-органный . Этот уровень характерен только для многоклеточных организмов. Элементарными единицами здесь являются ткани и органы. Ткань - это группа клеток, сходного строения и функциональности.

Она образуется в процессе онтогенеза многоклеточного организма путем дифференцировки клеток. Орган обычно состоит из нескольких разных тканей, объединенных между собой для выполнения единой функции. Органы, в свою очередь, объединяются в системы органов. Элементарными проявлениями жизни на тканево-органном уровне являются различные процессы жизнедеятельности, обеспечиваемые соответствующими тканями, органами, системами органов.

У одноклеточных организмов (например, инфузорий) есть специальные клеточные органоиды, аналогичные по функциям органам многоклеточных.

Так сократительная вакуоль по-сути представляет собой выделительную систему, пищеварительная вакуоль - пищеварительную и т.

Организм, особь или индивидуум - это элементарная единица организменного уровня организации жизни . На этом уровне наиболее ярко проявляются такие свойства живой материи как рост и развитие (онтогенез), размножение, раздражимость. Для одноклеточных форм жизни организменный и клеточный уровни совпадают. Многоклеточный организм представляет собой комплекс систем органов, каждая из которых выполняет свои функции, но во взаимосвязи с другими системами.

3. Уровни организации живой материи. Методы биологии

Организмы одного вида живут в природе не изолированно друг от друга. Обычно они объединены в популяции - совокупности особей одного вида, населяющих одно местообитание. Вид обычно состоит из множества популяций. Таким образом выделяют популяционно-видовой уровень организации живой материи . Именно в популяциях происходит половое размножение, накопление генетического разнообразия и элементарные эволюционные процессы, приводящие в конечном итоге к видообразованию.

Т. е. эволюция жизни на Земле возможна только на надорганизменном уровне.

На биогеоценотическом (экосистемном) уровне происходит объединение популяций разных видов, но обитающих на одной территории. Эти популяции взаимосвязаны пищевыми цепями, потоком энергии, созданием друг для друга условий обитания.

Биогеоценоз - элементарная единица этого уровня, для которого характерны такие явления как поток энергии и круговорот веществ.

Все биоценозы Земли составляют последний наивысший уровень организации жизни - биосферный . Элементарная единица - биосфера (причем только одна единственная). На этом уровне происходят глобальные круговороты веществ и превращения энергии, объединяющие все экосистемы в единое целое.

В настоящее время выделяют несколько уровней организации живой материи.

1. Молекулярный.

Любая живая система проявляется на уровне функционирования биополимеров, построенных из мономеров. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

Существует три типа биологических полимеров :

  • полисахариды (мономеры – моносахариды)
  • белки (мономеры – аминокислоты)
  • нуклеиновые кислоты (мономеры – нуклеотиды)

Не менее важными для организма органическими соединениями являются также липиды.

Клеточный.

Клетка является структурной и функциональ-ной единицей живых организмов, она представляет собой саморегулирующуюся, самовоспроизводящуюся живую систему.

Свободноживущих неклеточных форм жизни на Земле не существует.

3. Тканевый.

Ткань представляет собой совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции.

4. Органный.

Органы - это структурно-функциональные объединения нескольких типов тканей. Например, кожа человека как орган включает эпителий и соединительную ткань, которые вместе выполняют целый ряд функций, среди которых наиболее значительная - защитная, т.е.

функция отграничения внутренней среды организма от окружающей среды.

Уровни организации живой материи

Организменный.

Многоклеточный организм представляет собой целостную систему органов, специализированных для выполнения различных функций.

6. Популяционно-видовой.

Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка.

В этой системе осуществляются простейшие, эволюционные преобразо-вания.

7. Биогеоценотический.

Биогеоценоз - совокупность организ-мов разных видов и факторов среды их обитания, объединенных обменом веществ и энергии в единый природный комплекс.

8. Биосферный.

Биосфера - система высшего порядка, охва-тывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Клетка представляет собой обособленную, наименьшую по размерам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддерживать эти свойства в самой себе, а также передавать их в ряду поколений.

Клетка составляет основу строения, жизнедеятельности и развития всех живых форм - одноклеточных, многоклеточных и даже неклеточных.

В природе ей принадлежит роль элементарной структурной, функциональной и генетической единицы.

Благодаря заложенным в ней механизмам клетка обеспечивает обмен веществ, использование биологической информации, размножение, свойства наследственности и изменчивости, обусловливая тем самым присущие органическому миру качества единства и разнообразия.

Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействия. Это точно согласованный комплекс множества факторов окружающей среды, и приспособление к ним живых организмов обуславливает возможность существования всевозможных форм организмов и самого различного образования их жизни.

Экология (от греческого oikos - жилище, местообитание) - наука, изучающая взаимосвязи живых организмов в природе: организацию и функционирование популяций, биогеоценозов и биосферы в целом; законы “здорового” состояния как нормы и основы существования жизни.

Живая природа представляет собой сложно организованную, иерархичную систему. Выделяют несколько уровней организации живой материи.

1.Молекулярный. Любая живая система проявляется на уровне взаимодействия биологических макромолекул: нуклеиновых кислот, полисахаридов, а также других важных органических веществ.

2. Клеточный. Клетка - структурная и функциональная единица размножения и развития всех живых организмов, обитающих на Земле. Неклеточных форм жизни нет, а существование вирусов лишь подтверждает это правило, т.к. они могут проявлять свойства живых систем только в клетках.

3.Организменный. Организм представляет собой целостную одноклеточную или многоклеточную живую систему, способную к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных для выполнения различных функций.

4.Популяционно-видовой. Под видом понимают совокупность особей, сходных по структурно-функциональной организации, имеющих одинаковый кариотип и единое происхождение и занимающих определенный ареал обитания, свободно скрещивающихся между собой и дающих плодовитое потомство, характеризующихся сходным поведением и определенными взаимоотношениями с другими видами и факторами неживой природы.

Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

5.Биогеоценотический. Биогеоценоз - сообщество, совокупность организмов разных видов и различной сложности организации со всеми факторами конкретной среды их обитания - компонентами атмосферы, гидросферы и литосферы.

6.Биосферный. Биосфера - самый высокий уровень организации жизни на нашей планете. В ней выделяют живое вещество - совокупность всех живых организмов, неживое или косное вещество и биокосное вещество (почва).

Уровни организации живой материи. Окружающий нас мир живых существ - это совокупность биологических систем разной степени сложности, образующих единую иерархическую структуру. Причем следует отчетливо представлять, что взаимосвязь отдельных биологических систем, принадлежащих к одному уровню организации, формирует качественно новую систему. Одна клетка и множество клеток, один организм и группа организмов - разница не только в количестве. Совокупность клеток, обладающих общим строением и функцией, - это качественно новое образование - ткань. Группа организмов - это семья, стая, популяция, т. е. система, обладающая совершенно иными свойствами, нежели простое механическое суммирование свойств нескольких особей.

В процессе эволюции происходило постепенное усложнение организации живой материи. При образовании более сложного уровня предыдущий уровень, возникший ранее, входил в него как составная часть. Именно поэтому уровневая организация и эволюция являются отличительными признаками живой природы. В настоящее время жизнь как особая форма существования материи представлена на нашей планете несколькими уровнями организации.

Молекулярно-генетический уровень. Как бы сложно ни была организована любая живая система, в ее основе лежит взаимодействие биологических макромолекул: нуклеиновых кислот, белков, углеводов, а также других органических веществ. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: кодирование и передача наследственной информации, обмен веществ, превращение энергии. Клеточный уровень.

Клетка - это структурно-функциональная единица всего живого. Существование клетки лежит в основе размножения, роста и развития живых организмов. Вне клетки жизни нет, а существование вирусов только подтверждает это правило, потому что они могут реализовывать свою наследственную информацию только в клетке. Тканевый уровень. Ткань - это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемой функции. В животных организмах выделяют четыре основных типа ткани: эпителиальную, соединительную, мышечную и нервную. В растениях различают образовательные, покровные, проводящие, механические, основные и выделительные (секреторные) ткани. Органный уровень. Орган - это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию. Орган, как правило, образован несколькими тканями, среди которых одна (две) преобладает. Организменный (онтогенетический) уровень. Организм - это целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов. Существование организма обеспечивается путем поддержания гомеостаза (постоянства структуры, химического состава и физиологических параметров) в процессе взаимодействия с окружающей средой. Популяционно-видовой уровень. Популяция - совокупность особей одного вида, в течение длительного времени проживающих на определенной территории, внутри которой осуществляется в той или иной степени случайное скрещивание и нет существенных внутренних изоляционных барьеров; она частично или полностью изолирована от других популяций данного вида. Вид - совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство. Все особи одного вида имеют одинаковый ка-риотип, сходное поведение и занимают определенный ареал. На этом уровне осуществляется процесс видообразования, который происходит под действием эволюционных факторов. Биогеоценотический (экосистемный) уровень. Биогеоценоз - исторически сложившаяся совокупность организмов разных видов, взаимодействующая со всеми факторами их среды обитания. В биогеоценозах осуществляется круговорот веществ и энергии. Биосферный (глобальный) уровень. Биосфера - биологическая система высшего ранга, охватывающая все явления жизни в атмосфере, гидросфере и литосфере, которая объединяет все биогеоценозы (экосистемы) в единый комплекс. Здесь происходят все вещественно-энергетические круговороты, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. Таким образом, жизнь на нашей планете представлена саморегулирующимися и самовоспроизводящимися системами различного ранга, открытыми для вещества, энергии и информации. Существование и взаимодействие этих систем обеспечивается происходящими в них процессами жизнедеятельности и развития.

Эволюция клетки

В настоящее время известны следующие ос­новные формы организации живой материи: доклеточная (виру­сы), предъядерная (прокариоты) и ядерная (эукариоты). Существование каждой из этих форм явно свидетельствует о том, что в ходе эволюции они возникли не одновременно. Начиная с сере­дины XIX в. сформулированы несколько гипотез, объясняющих это явление (как отечественными, так и зарубежными авто­рами). Одной из наиболее интересных является гипотеза симбиогенеза. В ее основе лежит предположение К. С. Мережковского (1909) о происхождении органелл в результате вступления в симбиоз клеток нескольких бактерий (как гетеро-, так и автотрофных). Из современных интересна гипотеза синбактериогенеза А. Н. Студитского (1962, 1981). Суть ее сводится к симбиозу бактериальной клетки-хозяина и более мелкой, но тоже прокариотической клетки-гетеротрофа, ставшей митохондрией. В случае симбиоза с фототрофной клеткой (например, цианобактерии) клетка-хозяин переходила на автотрофное питание, поскольку в хлорофиллоносной клетке происходил фотосинтез. Так возникли пластиды. В пользу такой гипотезы свидетельствуют особенности этих органелл: они двухмембранные, имеют собственный генетический аппарат (ДНК, РНК, рибосомы), способны к делению. В то же время в случае автолиза («самопоедания») в клетке они становятся первыми «жертвами» лизисом. По наследству митохондрии и пластиды передаются чаще всего в виде зачаточных телец - промитохондрий и пропластид, покрытых двойной мембраной



Случайные статьи

Вверх