У растений и грибов выделительная система. Ткани грибов и их функции

Царство Дробянки
К этому царству относятся бактерии и сине-зеленые водо­росли. Это прокариотические организмы: в их клетках отсутствует ядро и мембранные органоиды, генетический материал представлен кольцевой молекулой ДНК. Также для них характерно наличие мезосом (впячивание мембраны внутрь клетки), выпол­няющих функцию митохондрий, и мелкие рибосомы.

Бактерии
Бактерии - это одноклеточные организмы. Они занимают все среды жизни и широко распространены в природе. По форме клеток бактерии бывают:
1. шаровидные: кокки - они могут объединяться и образовывать структуры из двух клеток (диплококки), в виде цепочек (стрептококки), гроздей (стафилококки) и т. п.;
2. палочковидные: бациллы (дизентерийная палочка, сенная палочка, чумная палочка);
3. изогнутые: вибрионы - форма запятой (холерный вибрион), спириллы - слабо спирализованные, спирохеты - сильно закрученные (возбудители сифилиса, возвратного тифа).

Строение бактерий
Снаружи клетка покрыта клеточной стенкой, в состав которой входит муреин. Многие бактерии способны формировать внешнюю капсулу, дающую дополнительную защиту. Под оболочкой находится плазматическая мембрана, а внутри клетки - цитоплазма с включениями, мелкими рибосомами и генетическим материалом в форме кольцевой ДНК. Участок клетки бактерии, в котором находится генетический материал, называют нуклеоидом. Многие бактерии имеют жгутики, отвечающие за движение.

Размножение
Осуществляется делением на две клетки. Сначала происходит репликация ДНК, затем в клетке возникает поперечная перегородка. При благоприятных условиях одно деление происходит каждые 15-20 минут. Бактерии способны образовывать колонии - скопление тысяч и более клеток, являющихся потомками одной исходной клетки (в природе колонии бактерий возникают редко; обычно - в искусственных условиях питательной среды).
При возникновении неблагоприятных условий бактерии способны образовывать споры. У спор очень плотная внешняя оболочка, способная переносить различные внешние воздействия: кипячение в течение нескольких часов, почти полное обезвоживание. Споры сохраняют жизнеспособность в течение десятков и сотен лет. При наступлении благоприятных условий спора прорастает и образует бактериальную клетку.

Условия жизни
1. Температура - оптимальна от +4 до +40 °С; если ниже, то большинство бактерий образуют споры, выше - погибают (поэтому медицинские инструменты кипятят, а не промораживают). Есть небольшая группа бактерий, предпочитающих высокую температуру - это термофилы, обитающие в гейзерах.
2. По отношению к кислороду выделяют две группы бактерий:
аэробы - обитают в кислородной среде;
анаэробы - обитают в бескислородной среде.
3. Нейтральная или щелочная среда. Кислая среда убивает большинство бактерий; на этом основано применение уксусной кислоты при консервировании.
4. Отсутствие прямых солнечных лучей (они также убивают большинство бактерий).

Значение бактерий
Положительное
1. Молочно-кислые бактерии используют для получения молочно-кислых продуктов (йогурт, простокваша, кефир), сыров; при квашении капусты и засолке огурцов; для производства силоса.
2. Бактерии-симбионты находятся в пищеварительном тракте многих животных (термиты, парнокопытные), участвуя в переваривании клетчатки.
3. Производство лекарств (антибиотик тетрациклин, стрептомицин), уксусной и др. органических кислот; производство кормового белка.
4. Разлагают трупы животных и мертвые растения, т. е. участвуют в круговороте веществ.
5. Бактерии-азотфиксаторы переводят атмосферный азот в соединения, усваиваемые растениями.

Отрицательное
1. Порча продуктов питания.
2. Вызывают заболевания человека (дифтерия, воспаление легких, ангина, дизентерия, холера, чума, туберкулез). Лечение и предупреждение: прививки; антибиотики; соблюдение гигиены; уничтожение переносчиков.
3. Вызывают болезни животных и растений.

Сине-зеленые водоросли (цианеи, цианобактерии)
Сине-зеленые водоросли обитают в водной среде и на почве. Их клетки имеют строение, типичное для прокариот. У многих из них в цитоплазме содержатся вакуоли, поддерживающие плавучесть клетки. Способны образовывать споры для пережидания неблагоприятных условий.
Сине-зеленые водоросли являются автотрофами, содержат хлорофилл и другие пигменты (каротин, ксантофилл, фикобиллины); способны к фотосинтезу. При фотосинтезе выделяют кислород в атмосферу (считается, что именно их деятельность привела к накоплению в атмосфере свободного кислорода).
Размножение осуществляется дроблением у одноклеточных форм и распадом колоний (вегетативное размножение) у нитчатых.
Значение сине-зеленых водорослей: вызывают «цветение» воды; связывают атмосферный азот, переводя его в доступные для растений формы (т. о. увеличивают продуктивность водоемов и рисовых чеков), входят в состав лишайников.

Размножение
Грибы размножаются бесполым и половым путем. Бесполое размножение: почкование; частями мицелия, с помощью спор. Споры бывают эндогенные (образуются внутри спорангиев) и экзогенные или конидии (они образуются на вершинах специальных гиф). Половое размножение у низших грибов осуществляется путем конъюгации, когда сливаются две гаметы и образуется зигоспора. Затем она формирует спорангии, где происходит мейоз, и образуются гаплоидные споры, из которых развивается новый мицелий. У высших грибов образуются сумки (аски), внутри которых развиваются гаплоидные аскоспоры, или базидии, к которым прикрепляются снаружи базидиоспоры.

Классификация грибов
Выделяют несколько отделов, которые объединяются в две группы: высшие и низшие грибы. Отдельно существуют т. н. несовершенные грибы, к которым относят виды грибов, половой процесс которых еще не установлен.

Отдел Зигомицеты
Относятся к низшим грибам. Наибо­лее распространен из них род Мукор - это плесневые грибы. Они поселяются на продуктах питания и мертвых органических остатках (например, на навозе), т. е. обладают сапротрофным типом питания. Мукор имеет хорошо развитый гаплоидный мицелий, гифы обычно нечленистые, плодового тела нет. Окраска мукора белая, при созревании спор он становится черным. Бесполое размножение происходит с помощью спор, которые созревают в спорангиях (при образовании спор происходит митоз), раз­вивающихся на концах некоторых гиф. Половое размножение встречается сравнительно редко (с помощью зигоспор).

Отдел Базидиомицеты
Это высшие грибы. Характеристика этого отдела рассматривается на примере шляпочных грибов. К этому отделу относится большинство съедобных грибов (шампиньон, белый гриб, масленок); но встречаются и ядовитые грибы (бледная поганка, мухомор).
Гифы имеют членистое строение. Мицелий многолетний; на нем формируются плодовые тела. Сначала плодовое тело растет под землей, потом выходит на поверхность, быстро увеличиваясь в размерах. Плодовое тело образовано плотно прилегающими друг к другу гифами, в нем выделяют шляпку и ножку. Верхний слой шляпки обычно ярко окрашен. В нижнем слое выделяют стерильные гифы, крупные клетки (защищают спороносный слой) и сами базидии. На нижнем слое образуются пластинки - это пластинчатые грибы (опенок, лисичка, груздь) или трубочки - это трубчатые грибы (масленок, белый гриб, подосиновик). На пластинках или на стенках трубочек формируются базидии, в которых происходит слияние ядер с образованием диплоидного ядра. Из него мейозом развиваются базидиоспоры, при прорастании которых образуется гаплоидный мицелий. Членики этого мицелия сливаются, но слияние ядер не происходит - так образуется дикарионный мицелий, который и формирует плодовое тело.

Значение грибов
1) Пищевое - многие грибы употребляются в пищу.
2) Вызывают болезни растений - аскомицеты, головневые и ржавчинные грибы. Эти грибы поражают злаки. Споры ржавчинных грибов (хлебная ржавчина) разносятся ветром и попадают на злаки из промежуточных хозяев (барбарис). Споры головневых грибов (головня) разносятся ветром, попадают на зерновки злаков (из зараженных растений злаков), прикрепляются и зимуют вместе с зерновкой. Когда она весной прорастает, спора гриба также прорастает и проникает внутрь растения. В дальнейшем гифы этого гриба проникают в колос злака, образуя споры черного цвета (отсюда и название). Эти грибы наносят серьезный урон сельскому хозяйству.
3) Вызывают болезни человека (стригущий лишай, аспергиллез).
4) Разрушают древесину (трутовики - поселяются на деревьях и деревянных постройках). Это двоякое значение: если разрушается мертвое дерево, то положительное, если живое или деревянные постройки - то отрицательное. В живое дерево трутовик проникает через ранки на поверхности, затем в древесине развивается мицелий, на котором формируются многолетние плодовые тела. На них образуются споры, разносимые ветром. Эти грибы могут вызвать гибель плодовых деревьев.
5) Ядовитые грибы могут служить причиной отравлений, иногда довольно тяжелых (вплоть до смертельного исхода).
6) Порча продуктов питания (плесени).
7) Получение лекарств.
8) Вызывают спиртовое брожение (дрожжи), поэтому используются человеком в хлебопекарной и кондитерской промышленности; в виноделии и пивоварении.
9) Являются редуцентами в сообществах.
10) Образуют симбиоз с выс­шими растениями - микоризу. При этом корни растения могут переваривать гифы гриба, а гриб - угнетать растение. Но, несмотря на это, данные взаимоотношения считаются взаимовыгодными. При наличии микоризы многие растения развиваются гораздо быстрее.

Лишайники
26 тыс. видов. Лишайники - это группа симбиотических организмов, состоящих из грибов (аскомицеты или базидиомицеты) и одноклеточных водорослей. Иногда в состав лишайников могут входить сине-зеленые водоросли.
Гриб (гетеротроф) - поглощает из почвы воду и минеральные вещества. Водоросли (автотрофы) - синтезируют органические вещества и отдают их грибу, взамен получая воду и минеральные вещества. Все это позволяет лишайнику существовать как единому организму.
По внешнему виду выделяют три группы лишайников:
— накипные или корковые (лецидея, леканора) - на камнях, зданиях и т. п., прочно срастаются с поверхностью субстрата;
— листоватые (пармелия, ксантория) - похожи на листовые пластинки, срастаются с субстратом посредством ножки, состоящей из гиф;
— кустистые (ягель или «олений мох», цетрария или «исландский мох», кладония) - в виде разветвленных кустиков на почве или свисающие с ветвей деревьев; прикреплены к субстрату с помощью основания таллома или ризоидов.

Тело лишайника представляет собой слоевище или таллом. 90 % его объема приходится на гифы гриба. Часто лишайники окрашены в различные цвета из-за присутствия в гифах гриба различных пигментов. Также окраска зависит от солей железа, состава и концентрации органических лишайниковых кислот (они свойственны только этим организмам).
В зависимости от взаимного расположения гриба и водоросли различают гомомерные и гетеромерные слоевища. В первом случае водоросли распределяются среди гиф гриба без особого порядка - это считается более древней и структурно более примитивной организацией. При гетеромерной организации слоевище дифференцировано на функциональные слои.

Размножение лишайников осуществляется несколькими способами:
— Обломками слоевища - высыхая, слоевище становится хрупким, и от него отламываются кусочки, распространяющиеся ветром.
— Соредиями (несколько клеток водоросли, оплетенных гифами гриба), которые формируются внутри слоевища.
— Изидиями - это выросты на теле слоевища, состоящие из клеток водоросли и гифов гриба.

Благодаря своему особому строению лишайники очень выносливы и способны разрастаться на субстратах, где не могут существовать ни грибы, ни водоросли в отдельности. Лишайники способны переносить длительную нехватку воды; температурные колебания (до –50 °С в тундре и до +50…+60 °С в пустынях, а антарктические виды живут при отрицательной температуре круглый год), причем фотосинтез происходит даже при отрицательных температурах. Характерен очень медленный рост. Лишайники требовательны к чистоте окружающей среды, при небольшом загрязнении они погибают (кроме некоторых видов).

Значение лишайников
1. Первыми заселяя безжизненные субстраты, они участвуют в образовании почвы.
2. Кормовое (зимой в тундре северные олени питаются в основном лишайниками).
3. Получение лакмуса и краски.
4. Биоиндикация - показатель загрязненности среды.
5. Некоторые виды съедобны для людей (манна).
6. Первая стадия эрозии горных пород.

Функции выделения из организма продуктов обмена веществ выполняют несколько систем органов, которые объединяют в единую функциональную выделительную систему. В нее входят:

-пищеварительная система - участвует в выделении непереваренных остатков пищи, продуктов метаболизма, некоторых лекарств, желчных пигментов, тяжелых металлов;

-дыхательная система - участвует в выделении углекислого газа, паров воды;

-кожа - через сальные и потовые железы выводятся вода, углекислый газ, продукты азотистого обмена (мочевина);

-мочевыделительная система - через нее удаляется до 75% выводимых из организма жидких продуктов обмена веществ.

В состав мочевыделительной системы входят: парные бобовидные почки , мочеточники , мочевой пузырь , мочеиспускательный канал .

Основной структурной единицей почки является нефрон (рис. 1), функцией которого является образование мочи.

Образование мочи

В процессе образования мочи выделяют две фазы: фильтрационную и реабсорбционную .

Первая фаза - фильтрационная - это образование первичной мочи в клубочках нефрона . Из почечных капилляров в полость капсулы профильтровывается из крови вода и растворенные в ней вещества. В первичной моче содержатся все компоненты плазмы крови, кроме высокомолекулярных белков, которые не могут профильтровываться через стенки капсулы и капилляров. Первичная моча также содержит аминокислоты, глюкозу, витамины и соли, продукты обмена - мочевину, мочевую кислоту. За сутки у человека образуется 150-180 л первичной мочи.

Рис. 1. Строение органов и структурных элементов выделительной системы. А - левая почка в разрезе; Б - нефрон; В - клубочек: 1 - корковое вещество; 2 - мозговое вещество; 3 - почечные пирамиды; 4 - основание пирамиды; 5 - почечные сосочки; 6 - извитые почечные канальцы; 7 - петля Генле; 8 - клубочек; 9 - почечное тельце; 10 - капсула клубочка (Боумана)

Во второй фазе - реабсорбции , которая происходит в канальцах нефрона , осуществляется обратное всасывание из первичной мочи в кровь нужных для организма веществ: аминокислот, глюкозы, витаминов. В канальцах всасывается 99% воды, содержащейся в первичной моче. В связи с этим во вторичной моче резко повышается концентрация сульфатов, фосфатов, мочевины, мочевой кислоты и других веществ, которые не всасываются в кровь, - происходит концентрирование мочи. В конечном счете в течение суток из 150-180 л первичной мочи образуется около 2 л вторичной мочи.

В канальцах нефрона наблюдается также выделение (секреция) веществ в мочу. В основном это вещества, которые не могут пройти из кровеносных капилляров в капсулу клубочков, например многие лекарственные препараты.

Вспомните

  1. Как растения удаляют ненужные вещества?
  2. Как удаляются ненужные продукты жизнедеятельности у животных?

Организмы в процессе жизнедеятельности образуют конечные продукты обмена, которые выделяются в окружающую среду. Освобождение от них называют выделением . У растений и грибов, в отличие от животных, нет специальной выделительной системы. Продукты обмена у них могут накапливаться в клетках и органах. Например, плодовые тела старых шляпочных грибов содержат ядовитые вещества, поэтому их нельзя употреблять в пищу.

У растений продукты обмена веществ накапливаются в вакуолях клеток, в специальных хранилищах, например в смоляных ходах у хвойных, млечных ходах у одуванчика и молочая. У многолетних растений они накапливаются в коре, иногда в древесине. Удаление продуктов жизнедеятельности у растений происходит через корни и опавшие листья. Установлено, что к осени в клетках листьев накапливаются вредные для растения вещества, которые удаляются из растения вместе с опадающими листьями.

Через устьица и чечевички коры, например березы, из растения удаляется углекислый газ (см. рис. 53).

Выделение Сахаров у растений осуществляется специальными образованиями - нектарниками. У большинства растений они находятся в цветках, а у некоторых - на стеблях и листьях. Нектар обладает бактерицидными свойствами и защищает завязь цветка от микроорганизмов. К тому же нектар наряду с окрашенным венчиком и ароматом цветков является важным приспособлением для привлечения насекомых, осуществляющих перекрестное опыление.

Через специальные железы растений в атмосферу выделяются летучие вещества, в том числе эфирные масла. К эфиромасличным растениям относятся пеларгония, мята, мелисса, эвкалипт. Многие из них используются в лекарственных целях, а также для ароматизации продуктов, изготовления парфюмерной продукции.

Опавшие листья растений содержат неорганические и органические вещества и представляют собой очень ценное удобрение. Поэтому садоводы закладывают листья в компостные кучи. Благодаря опавшим листьям почва в лесу ежегодно обогащается перегноем. Вот почему их не надо жечь. Вполне понятно, что сбор опавших листьев и вообще удаление лесной подстилки в лесу отрицательно сказываются на жизни деревьев.

В городах, где почва и воздух загрязнены выхлопными газами автомобилей, выбросами промышленных предприятий, в листьях накапливаются ядовитые вещества. Поэтому их нельзя использовать для приготовления компоста, а почву следует регулярно удобрять.

У животных в процессе обмена веществ также образуются вредные продукты жизнедеятельности, которые удаляются во внешнюю среду. У гидры, медузы продукты обмена удаляются через поверхность тела. У насекомых эту функцию выполняют трубчатые выросты кишечника, через которые из полости тела удаляется жидкость с продуктами обмена. У дождевого червя органами выделения служат выделительные трубочки - по одной паре в каждом членике. Вода и продукты распада из полости тела собираются с помощью воронки и выводятся по трубочкам через отверстие на поверхности тела.

Продукты обмена у рыб удаляются через жабры и почки. У птиц и млекопитающих продукты обмена веществ выводятся через почки , легкие, кишечник и потовые железы. Через легкие выводятся углекислый газ, вода и некоторые летучие вещества. Кишечник выделяет некоторые соли в составе экскрементов. У большинства зверей и человека часть вредных для организма веществ удаляется вместе с потом.

Однако основная роль в выделительных процессах принадлежит почкам. Они выводят из организма мочу, содержащую воду, соли, аммиак, мочевину или мочевую кислоту. Через почки из организма удаляются многие чужеродные и ядовитые вещества, образующиеся в процессе жизнедеятельности или при принятии лекарств.

Ответьте на вопросы

  1. Где у растений накапливаются продукты обмена веществ?
  2. Как происходит выделение вредных веществ у растений?
  3. Какие продукты обмена веществ выделяются из организма позвоночных животных через легкие, кишечник, потовые железы?

Новые понятия

Выделение. Почки.

Подумайте!

Чем различается выделение веществ у растений и животных?

Моя лаборатория

У растений вредные продукты жизнедеятельности удаляются во время листопада. Листопад обычен у деревьев и кустарников. Изредка встречается у трав, например у крапивы, недотроги. Массовый листопад, приводящий к полной потере листьев, происходит у растений умеренного пояса с наступлением зимы, а у растений субтропиков и тропиков в засушливый период.

У древесных растений умеренных широт подготовка к листопаду начинается задолго до наступления морозов. Перед листопадом листья меняют свою окраску с зеленой на желтую, оранжевую, красную и др. (рис. 61).

Рис. 61. Разнообразие окраски листьев перед листопадом

Это связано с тем, что к осени происходит старение листьев. В них накапливаются продукты обмена веществ, разрушается зеленый пигмент листьев - хлорофилл. Более стойкие пигменты (красные, желтые и др.) сохраняются. Они-то и придают листьям осеннюю окраску в этот период.

Сигналом к наступлению листопада служит сокращение длины светового дня. Установлено, что деревья вблизи уличных фонарей сохраняют листья дольше, чем растущие вдали от них.

Опадение листьев связано с появлением у основания листа отделительного слоя из легко разъединяющихся клеток. Поэтому даже при небольшом ветре листья опадают. Продолжительность листопада у различных растений неодинаковая. Береза сбрасывает листья около двух месяцев, липа и дуб - в течение двух недель. Деревья, растущие в одиночку или небольшими группами, где они подвержены ветру, теряют листья раньше, чем растущие в лесу. Листопадные деревья в лесах умеренных широт стоят без листьев до восьми-девяти месяцев в году, во влажных тропических лесах - иногда всего несколько дней. Листопад играет важную роль в жизни леса - опавшие листья перегнивают и служат хорошим удобрением, предохраняют корни от вымерзания.

Но не все растения сбрасывают листья. Некоторые сохраняют их всю зиму. Это вечнозеленые кустарнички: брусника, вереск, клюква. Мелкие, плотные листья этих растений, слабо испаряющие воду, сохраняются под снегом.

С зелеными листьями зимует большинство хвойных деревьев и кустарников. Некоторые травы, например земляника, клевер, чистотел, тоже уходят под снег зелеными.

Задание

Осенью проведите наблюдения в природе за изменениями в жизни растений: окраской листьев, листопадом (начало и конец), созреванием плодов и семян (каких растений), изменениями в жизни животных (исчезновение муравьев, отлет птиц).

Выводы к главе 3

Обмен веществ - основное свойство всех организмов. Организмы непрерывно обмениваются с окружающей средой веществами и энергией. С прекращением обмена веществ прекращается и жизнь.

Питание - необходимое условие обмена веществ. По способу питания все организмы делят на две группы: автотрофы и гетеротро-фы. Автотрофные организмы образуют органические вещества из неорганических с использованием энергии Солнца или энергии, освобождающейся в ходе химических реакций. Гетеротрофные организмы питаются готовыми органическими веществами.

Дыхание - процесс постоянного обмена газами (газообмен) между организмом и окружающей средой. В результате дыхания освобождается энергия, заключенная в органических веществах клеток. Эта энергия используется на процессы жизнедеятельности организма: питание, рост, развитие, размножение, передвижение веществ.

Транспорт веществ в организме обеспечивает связь между всеми органами организма и с окружающей средой. Транспортная система растений представлена сосудами и ситовидными трубками. У животных основными переносчиками питательных веществ и кислорода являются гемолимфа и кровь.

Выделение - освобождение организма от вредных продуктов жизнедеятельности. У растений они удаляются с опавшими листьями. У животных выделение осуществляется через поверхность тела, систему выделительных трубочек, жабры, почки, легкие, кишечник, кожу.

Несмотря на то, что грибы по своему происхождению непосредственно примыкают к простейшим существам и стоят на более низкой ступени развития по сравнению с животными и растительными организмами, все же в пределах вида эволюция проявилась в достаточно широкой мере. Жизнь низшего организма ограничена во времени и несложна по своим функциям. Она поддерживается благодаря способности вида быстро и неограниченно размножаться, сохраняя количественное превосходство. Это довольно примитивный способ самозащиты, не требующий какого-то самосовершенствования. По мере усложнения организма, естественно, что индивидуальная жизнь приобретает все большую ценность. Такой курс эволюции и привел грибы к их теперешнему состоянию. У стоящих на нижней ступени развития одна клетка выполняет все функции, напрягая все усилия на размножение. Но постепенно начинается деление на вегетативные части (грибница) и на органы размножения. Затем происходит деление вегетативных органов. В дальнейшем идет развитие различных стадий грибницы, предназначенных для определенных целей (покоящиеся стадии) и усложнение плодовых тел в целях лучшего их предохранения как органов размножения от вредных воздействий внешней среды. Все это, наконец, в конечном итоге приводит к образованию грибных тканей, физиологически приспособленных к определенным функциям и потому отличающихся рядом признаков. Происхождение грибных тканей может быть двояким: первый случай, нормальный, присущий всем грибным организмам, - это развитие из гифы. Гифы, переплетаясь, образуют пучки, которые дают развитие шнуровой ткани. Второй способ - это образование клубочков. В каком-нибудь месте на своем протяжении гифа дает большее или меньшее количество боковых ветвей, которые сплетаются в клубок (как, например, при образовании склероция). При срастании гиф или при образовании клубочков получается более-менее плотная ткань. Такая ткань у грибов по характеру выполнения функций делится на несколько типов. Покровная, или защитная, ткань Она служит для защиты всех остальных тканей от внешних воздействий и является одной из наиболее резко выраженных у грибов. Состоит из ярко-окрашенных, плотно переплетенных гиф. Покровная ткань хорошо развита на верхней поверхности шляпочных грибов, таких как, например, сыроежек или мухомора, она выглядит пленкой, легко отделяющейся от шляпки, наподобие эпидермы листа растений. Оболочка ризоморф или склероциев, состоящая из одного или нескольких слоев омертвелых клеток, тоже характерный пример покровной ткани. Очень часто покровные части представляются весьма плотными с одеревеневшими клетками с утолщенной оболочкой, как то можно увидеть у некоторых трутовиков. Поверхность покровной ткани может быть гладкой и голой, покрытой различными образованиями. У трюфелей, например, наблюдаются бугорки или бородавки, у рыжиков - студенистый налет, у чешуйчатки - сети чешуек, у ряда видов - сплетение волосков, образующих сплошной войлочный покров. Органы питания Грибы «принимают пищу» исключительно в форме раствора, проникающего в грибную клетку через оболочку. Питательный раствор поглощается всей поверхностью грибницы, находящейся с ним в соприкосновении. Нередко случается так, что грибница распределяется как внутри субстрата, так и на его поверхности (воздушная грибница). Функция питания выпадает на долю той части грибницы, которая находится внутри субстрата, в непосредственном контакте с питательными соками. Однако никакого ущемления «прав» воздушной грибницы в данном случае не происходит, и она исправно получает свой «паек», а при прикрытии ее субстратом также станет хорошо усваивать растворы, как и погруженные с самого начала части. Когда мы говорим о всасывающей ткани, имеются в виду только деятельные части вегетативных органов, то есть нормальная грибница. Что же касается покоящихся стадий, то у них всасывающая способность не проявляется и при пробуждении в жизнь дальнейшее развитие протекает за счет накопленных у них питательных веществ в форме белков и особенно жиров. Проводящая ткань Как правило, специальной проводящей ткани у грибов не существует, и питательные соки у большинства видов распределяются всасыванием или через соединительные отверстия смежных клеток по всем вегетативным и репродуктивным тканям. Проводящая способность грибных гиф очень велика, и соки циркулируют в них без задержки. Например, у белого гриба, у подосиновика питательные вещества переносятся внутриклеточной жидкостью при температуре 20°С за 1 час на 10-12 см. Такая скорость зависит от повышенного испарения и очень скоро надает при повышении влажности воздуха, при котором испарение снижается. Иногда у некоторых видов можно выявить более сложное и целесообразное устройство, состоящее из сплетения гиф и предназначенное для возможно быстрого и обильного переноса, главным образом, воды. Такая специальная организация проводящей ткани, напоминающая собой систему сосудистых пучков у высших растений, присуща, например, домовому грибу, который вызывает разрушение древесины в постройках не только нижних этажей, где количество влаги вполне обеспечено, но также в верхних этажах. Гриб использует все закоулки данного здания благодаря разветвленной сети шнуроподобных гиф. Гифы способны проводить воду в избытке на какое угодно расстояние и поднимаются в постройках из подвалов до крыш, даже по косякам дверей и окон, отчасти по стенам, всюду пронося с собой воду. Запасные ткани Эти ткани играют существенную роль у грибов. Они обеспечивают их беспрепятственное дальнейшее развитие при прекращении питания извне. Здесь необходимо отметить, что речь идет не столько о специальных тканях, сколько о частях организма, в которых сосредотачиваются запасные материалы для своевременного использования. Основными запасными элементами грибов являются жировые вещества в виде масел и углеводов, заменяющих собой крахмал (широко распространенный у растений). Кроме того, используется и гликоген, который характерен как запасное вещество в животных организмах. Грибы, как и животные, вполне могут его синтезировать. Во всех органах грибов, мобилизованных исполнять обязанности запасных тканей, можно находить тот или иной из названных элементов, либо все вместе. Классическим примером запасной ткани могут служить споры, если трактовать этот термин в данном случае в широком значении этого слова. Споры физиологически заменяют семена высших растений и подобно им должны быть снабжены запасными веществами. Разложение этих веществ на питательные продукты обеспечивает начальный период роста гифы, происходящей из споры. Если рассмотреть спору под микроскопом, то всегда можно обнаружить в ней некоторое количество масла в виде преломляющих свет шаровидных капель. Не менее типичными запасными элементами являются покоящиеся стадии грибницы-склероции. Запасную ткань в них представляет сердцевина, а клетки оболочки составляют покровную защитную ткань. К запасной ткани можно также отнести сумки у сумчатых грибов. При образовании в них спор, они оказываются заполненными гликогеном. Гликоген используется созревающими спорами и после их готовности исчезает из сумок, будучи полностью употребленным. Механическая ткань Под этим названием подразумевается та часть или части организма, которые придают ему необходимую прочность и фиксируют его форму. У высших растений механическая ткань складывается из клеток с утолщенными стенками, так называемых склеренхимных клеток. Эти клетки располагаются не как попало, а по определенной закономерности в целях достижения наибольшего результата при наименьшей затрате материала. Склеренхимноподобные клетки с утолщенной оболочкой можно встретить в шнурах домового гриба. Наибольшего развития механическая ткань достигает в плодовых телах высших грибов. Причем у одних видов склеренхимное строение ножки приводит к одеревенению ткани, как, например, у гриба подаксиса пестичного, распространенного в сухих степях. В других случаях не всегда можно наблюдать утолщение клеточных стенок в ножке. Необходимое сопротивление излому достигается за счет волокнистого строения параллельно расположенных гиф, естественно более устойчивых в горизонтальном, чем в продольном направлении, в котором они легко расщепляются. Само собой разумеется, что сопротивление будет находиться в зависимости от диаметра ножки, и мы видим, что при подобном строении ножки бывают очень толстыми, как, например, у подосиновика или у белого гриба. Это вызывает необходимость расточительного пользования органическим веществом. Однако нередко встречается более экономичный и целесообразный тип построения ножки - в виде полой трубочки. Принцип здесь тот же, что и применяемый в механике при постройке мостов или других сооружений из полых металлических частей. В этом случае затраты органического вещества малы, а между тем сопротивление излому довольно велико в силу определенной эластичности, что не требует чрезмерного утолщения клеточных стенок. Наличие пустой полости в ножке характерно для многих шляпочных грибов. Оригинальное приспособление механической ткани бывает у видов, основное распространение спор которых ориентировано на насекомых. Задача, следовательно, состоит в том, чтобы облегчить насекомым доступ к спороносному слою плодового тела, издающего во время созревания трупных запах, что, как известно, является приманкой для некоторых видов насекомых. Плодовое тело представляется в виде яйца, находящегося на поверхности почвы или в ее верхних слоях. Ко времени созревания верхняя часть оболочки лопается и из нее сравнительно быстро выступает удлиненная ножка в 10-25 см длиной, на вершине которой располагается спороносная ткань. На удлинение ножки требуется около 36 часов, после чего начинается постепенное ослизнение шляпки и происходит разложение плодового тела. В этом процессе главную роль играет не столько рост гиф, сколько их необыкновенная растяжимость. Выделительная, или выводная, ткань Она довольно широко распространена у грибов. Гифы многих видов выделяют на своей поверхности смолистые вещества, кристаллы щавелевокислой извести. Плотный сплошной налет извести наблюдается на протяжении гиф грибницы шампиньона. Выделение извести зависит от индивидуальных особенностей, а также от условий питания, но, как правило, оно имеет место преимущественно в молодом возрасте, что объясняется более деятельным обменом веществ. Грибы имеют фактически настоящие выводные, или выделительные, ткани, которые в достаточной степени разделены. Прежде всего, следует остановиться на млечных сосудах, присущих, например рыжику. Рассматривая внимательно плодовое тело рыжика, нетрудно заметить, что ткани ножки и шляпки не однородны, а довольно резко отличаются. Основная масса состоит из тонких цилиндрических гиф, образующих у периферии сплошной слой. В середине шляпки и ножки в эту основную ткань вклиниваются скопления клеток с утолщенными стенками. На разрезе они образуют овальные или округлые островки в виде розетки, в центре которой располагается тонкая гифа, заполненная водянистым содержимым. В нитчатой ткани, на границе с утолщенными клетками, и находятся млечные сосуды. У них более значительные размеры, они имеют растяжимые стенки, часто сплетающиеся в букву Н. Сосуды пронизывают все плодовое тело. Содержимое млечного сока составляет сложный химический комплекс из красящих веществ (пигментов), из смол и жиров. Встречаются также белки, гликоген. Окраска сока бывает различной - красная, молочно-белая, зеленая, иногда изменяющаяся в присутствии воздуха от окисления. Ассимиляционная ткань У грибов она отсутствует, так как, не обладая хлорофиллом, они не в состоянии ассимилировать углекислоту из воздуха. Поскольку у грибов не имеется ни устьиц, ни воздушных камер, столь характерных для высших растений, то не приходится говорить и о наличии каких-либо специальных дыхательных грибных тканей. Но, тем не менее, даже в самых плотных тканях, какими являются склероции и ризоморфы, всегда имеются промежутки, через которые внутренние ткани входят в непосредственное соприкосновение с окружающим воздухом, проникающим свободно между сплетениями гиф. Процесс дыхания, то есть поглощения кислорода и выделения углекислоты, производится всей поверхностью живой гифы. Как можно видеть из вышеприведенного изложения, функции грибных тканей не так резко разграничены, как-то имеет место у высших растений, у которых такое деление пошло дальше. Часто одни и те же гифы исполняют несколько функций, что обусловливает большую гибкость грибов в приспособлении к условиям окружающей среды.

Разведение грибов на дачном участке, в квартире, в гараже.

Конечными продуктами расщепления жиров и углеводов являются вода и углекислый газ. При распаде белков, кроме того, выделяется еще и аммиак. В печени аммиак превращается в мочевину. Все эти вещества попадают в кровь и переносятся к почкам илегким , через которые и происходит их удаление из организма.

В выведении продуктов обмена принимает участие и кожа : удаляется часть углекислого газа; потовые железы кожи выводят воду, соли, около 1% мочевины. Вкишечник из секретируются желчные пигменты и соли тяжелых металлов.

Главной системой, отвечающей за выведение продуктов метаболизма, является мочевыделительная система. Почки выполняет ряд функций: удаляют ненужные продукты обмена (аммиак, мочевину);выводят из организма "чужеродные" вещества (ядовитые вещества, всосавшиеся в кишечнике, лекарственные препараты);регулируют водно-солевой обмен иpH крови;синтезируют биологически активные вещества , регулирующие кроветворение и кровяное давление,выводят избыток глюкозы из организма.

Выделительная система представлена почками, мочеточниками, мочевым пузырем, мочеиспускательным каналом.

Почки на задней стенке брюшной полости, правая ниже левой на 1 - 1,5 см. Покрыты фиброзной капсулой , в области ворот (место входа в почку сосудов и мочеточника) и на задней стенкежировая ткань .

Расположены почки в задней части брюшной полости (рис. 218), правая ниже левой на 1-1,5 см, так как над ней находится печень.

Рис. 218. Расположение органов выделения

Рис. 219. Строение почки:

1 - почечная артерия; 2 - почечная вена; 3 - мочеточник; 4 - корковое вещество; 5 - пирамидки мозгового вещества; 6 - почечная лоханка.

Рис. 220. Микроскопическое строение почки:

1 - фиброзная капсула; 2 - жировая ткань; 3 - корковый слой; 4 - мозговой слой; 5 - сосочек; 6 - малая чашка.

В почке (рис. 219) снаружи расположено корковое вещество толщиной около 4 мм, содержащее почечные тельца нефронов, под ниммозговое вещество , образующее пирамидки, верхушки которых называются сосочками (в среднем 12).

В сосочках собирательные трубочки открываются в малые чашки (8-9 штук), затем вторичная моча попадает в двебольшие чашки и затем в полость - почечную лоханку (рис. 220).

Кровь попадает в почки из брюшной аорты через почечную артерию , очищенная выводится черезпочечную вену в нижнюю полую вену.

Основной структурной и функциональной единицей почки является нефрон , в почке около 1 млн. нефронов. В нефроне различают капсулу Боумена-Шумлянского, в которой находится капиллярный клубочек. Капсула продолжается в извитой каналец, впадающий через собирательную трубочку в почечную лоханку (рис. 221).За сутки вся кровь проходит через почки около 300 раз.

В капиллярном клубочке (мальпигиевом тельце) высокое кровяное давление, так как приносящая артериола клубочка почти в два раза больше по диаметру, чем выносящая . Выносящая артериола вновь разветвляется, оплетая капиллярами извитой каналец, затем венозные капилляры собираются в почечную вену.



Случайные статьи

Вверх