Межмолекулярные силы ван-дер-ваальса. Молекулярная связь (силы Ван-дер-Ваальса) – основы материаловедения Связи ван дер ваальса молекулы

Сила Ван-дер-Ваальса, сила межмолекулярного притяжения, имеет три составляющие: ориентационное, индукционное и дисперсионное взаимодействия.

Ориентационное (диполь - дипольное) взаимодействие появляется между полярными молекулами. В результате беспорядочного теплового движения молекул при их сближении друг с другом одноименно заряженные концы диполей взаимно отталкиваются, а противоположно заряженные притягиваются. Чем более полярны молекулы, тем сильнее они притягиваются и тем самым больше ориентационное взаимодействие.

Индукционное взаимодействие молекул осуществляется за счет их индуцированных диполей. Допустим, что встречаются полярная и неполярная молекулы. Под действием полярной молекулы неполярная молекула деформируется и в ней возникает (индуцируется) диполь. Индуцированный диполь притягивается к постоянному диполю полярной молекулы и в свою очередь усиливает электрический момент диполя полярной молекулы. Индукционное взаимодействие тем больше, чем больше момент диполя и поляризуемость молекулы.

Дисперсионное взаимодействие молекул друг с другом за счет их мгновенных микродиполей. При сближении молекул ориентация микродиполей перестает быть независимой и их появление и исчезновение в разных молекулах происходит в такт друг другу. Синхронное появление и исчезновение микродиполей разных молекул сопровождается их

притяжением. При отсутствии синхронности в появлении и исчезновении микродиполей происходит отталкивание.

Они обладают несколько отличной физической природой, но их потенциал зависит от расстояния между молекулами одинаково – как . Это позволяет непосредственно сравнивать константы взаимодействия, соответствующие трем составляющим силы Ван-дер-Ваальса, причем по причине их одинаковой зависимости от расстояния, пропорция между компонентами будет сохраняться при различных . Сами же константы при множителе будут отличаться для разных веществ.

(1)

В основе всех трех составляющих силы Ван-дер-Ваальса лежит взаимодействие диполей, поэтому напомним две основные формулы.

где – единичный вектор в направлении
на диполь из точки, где ищем поле.

Водородная связь

Ни одна из планет Солнечной системы не содержит на своей поверхности такого большого количества воды, как наша Земля. Моря и океаны, средняя глубина которых около 6 км, покрывают 71 % поверхности Земли. Огромное количество воды в виде снега и льда сосредоточено в приполярных районах.

Этот удивительный факт пока не нашел однозначного объяснения. Безусловно, вода играет огромную роль в возникновении и существовании жизни на нашей планете. Во многом это связано со свойствами, которых нет у ее ближайших соседей и аналогов. Прежде всего нужно разобраться, почему вода может находиться в жидком и даже в твердом состоянии (лед) в условиях, в которых похожие соединения водорода с более тяжелыми элементами (серой, селеном и т.д.) газообразны.

Молекула воды имеет следующее электронное строение:

Две электронные пары образуют полярные ковалентные связи между атомами водорода и кислорода, а оставшиеся две электронные пары остаются свободными и называются неподеленными . Молекула воды имеет угловое строение, угол Н–О–Н составляет 104,5 градусов.

Наличие в молекулах H 2 O неподеленных электронных пар у атомов кислорода и положительно заряженных атомов водорода приводит к совершенно особому взаимодействию между молекулами, называемому ВОДОРОДНОЙ СВЯЗЬЮ (рис. 7-1). В отличие от всех уже знакомых нам видов химической связи эта связь – межмолекулярная .

Водородная связь (на рисунке она обозначена пунктиром) возникает при взаимодействии обедненного электронами атома водорода одной молекулы воды с неподеленной электронной парой атома кислорода другой молекулы воды.

Рис. 7-1. Водородные связи между молекулами воды (обозначены пунктиром).

Водородная связь является частным случаем межмолекулярных связей . Считается, что она обусловлена в основном электростатическими силами. Для возникновения водородной связи нужно, чтобы в молекуле был один или несколько атомов водорода, связанных с небольшими, но электроотрицательными атомами, например: O, N, F. Важно, чтобы у этих электроотрицательных атомов были неподеленные электронные пары. Поэтому водородные связи характерны для таких веществ, как вода H 2 O, аммиак NH 3 , фтороводород HF. Например, молекулы HF связаны между собой водородными связями, которые на рисунке показаны пунктирными линиями:

Водородные связи приблизительно в 20 раз менее прочные, чем ковалентные, но именно они заставляют воду быть жидкостью или льдом (а не газом) в обычных условиях. Водородные связи разрушаются только тогда, когда жидкая вода переходит в пар.

При температурах выше 0°С (но ниже температуры кипения) вода уже не имеет такую упорядоченную межмолекулярную структуру, как показано на рис. 7-1. Поэтому в жидкой воде молекулы связаны между собой лишь в отдельные агрегаты из нескольких молекул. Эти агрегаты могут свободно двигаться рядом друг с другом, образуя подвижную жидкость. Но при понижении температуры упорядоченность становится все больше и больше, а агрегаты – все крупнее. Наконец, образуется лед, который имеет именно такую упорядоченную структуру, которая показана на рисунке.

В кристалле льда между молекулами остаются пустоты. Объем этих пустот больше, чем размер отдельной молекулы Н 2 О. Поэтому лед имеет меньшую плотность, чем жидкая вода и плавает на поверхности воды. Большинство же других веществ при замерзании увеличивает свою плотность.

Таким образом, водородные связи придают воде еще одно уникальное свойство, без которого вряд ли могла бы существовать разнообразная жизнь в тех районах Земли, где температура зимой понижается ниже 0°С. Если бы лед тонул в воде, то зимой все водоемы промерзали бы до самого дна. Трудно ожидать, что рыбы согласились бы жить в таких условиях. Человек мог бы растапливать лед, превращая его в воду для своих нужд, но это потребовало бы огромных затрат дополнительной энергии.

Растворение

Растворение – процесс обратимый: в зависимости от условий происходит или растворение, или выделение из раствора растворенного вещества. Вследствие обратимости процесса растворения к нему применим принцип Ле Шателье. Если растворение вещества происходит с поглощением теплоты, то повышение температуры приводит к увеличению растворимости. Наоборот, если при растворении вещества теплота выделяется, то повышение температуры приведет к уменьшению растворимости. В большинстве случаев растворимость солей возрастает с повышением температуры, для одних умеренно (NaCl), а для других весьма сильно (KNO3, AgNO3), и лишь в отдельных случаях растворимость уменьшается.

Насыщенным называется раствор, находящийся в равновесии с твердой фазой растворенного вещества и содержащий максимально возможное при данных условиях его количество (имеет место динамическое равновесие).

Раствор, концентрация которого ниже концентрации насыщенного раствора, называется ненасыщенным. В таком растворе можно при тех же условиях растворить дополнительное количества вещества. Существуют и пересыщенные растворы, которые содержат вещества больше, чем это следует из его растворимости при данных условиях (получаются путем охлаждения растворов, полученных при более высоких температурах. Такие растворы метастабильны. «Затравки» в виде кристаллов или потирание стеклянной палочки о стенку сосуда вызывают бурную кристаллизацию вещества).

Ван-дер-ваальсовы силы

Ван-дер-ваальсовы силы — одна из разновидностей сил притяжения, действующих между атомами и молекулами. Важность этих сил следует из двух уникальных их свойств. Во-первых, эти силы универсальны. Такой механизм притяжения действует между всеми атомами и молекулами. Он ответствен за такие явления, как сцепление атомов инертных газов в твердом и жидком состояниях и физическая адсорбция молекул на поверхности твердых тел, когда отсутствуют нормальные химические связи. Во-вторых, эти силы сохраняют значительную величину при сравнительно больших расстояниях между молекулами и отличаются аддитивностью для большого числа молекул. Ван-дер-ваальсовы силы влияют на различные свойства газов. Кроме того, они приводят к возникновению притяжения между двумя твердыми объектами, разделенными малым зазором, что существенно для сцепления и устойчивости коллоидов. Если молекулы находятся на некотором расстоянии друг от друга, теоретические выражения для этих сил особенно просты и к настоящему времени подтверждены экспериментально как для изолированных молекул, так и для двух твердых объектов, разделенных малым зазором.
R.Н.S. Wintеrtоn, Van der Waals Forces, Contemp. Phys. 11 (6), 559 (1970) Перевод. М. Гуревича. Автор статьи Р. Уинтертон — сотрудник Кавендишской лаборатории, Кембридж, Великобритания.

10-20 кДж /моль . Этим термином первоначально обозначались все такие силы, в современной науке он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей . Открыты Й. Д. Ван дер Ваальсом в 1869 году .

Вандерваальсовы силы межатомного взаимодействия инертных газов обусловливают возможность существования агрегатных состояний инертных газов (газ , жидкость и твёрдые тела).

К вандерваальсовым силам относятся взаимодействия между диполями (постоянными и наведёнными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса . Эти взаимодействия, а также водородные связи , определяют формирование пространственной структуры биологических макромолекул.

Вандерваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами .

Классификация вандерваальсовых сил

Вандерваальсово взаимодействие состоит из трёх типов слабых электромагнитных взаимодействий:

  • Ориентационные силы , диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твёрдом состоянии. Энергия такого взаимодействия обратно пропорциональна кубу расстояния между диполями.
  • Дисперсионное притяжение (лондоновские силы, дисперсионные силы). Обусловлены взаимодействием между мгновенным и наведённым диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.
  • Индукционное притяжение (поляризационное притяжение). Взаимодействие между постоянным диполем и наведённым (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

До сих пор многие авторы исходят из предположения, что вандерваальсовы силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного предположения построены многие двумерные модели, «описывающие» свойства, в частности графита и нитрида бора .

В последнем случае действуют так называемые силы Казимира и Казимира - Лифшица .

Проявления в природе

См. также

Примечания

Литература

  • Бараш Ю. С. Силы Ван-дер-Ваальса. - М. : Наука, 1988. - 344 с.
  • Каплан И. Г. Введение в теорию межмолекулярных взаимодействий. - М. : Наука, 1982. - 312 с.
  • Каплан И. Г. Межмолекулярные взаимодействия. Физическая интерпретация, компьютерные расчёты и модельные потенциал. - М.: БИНОМ. Лаборатория знаний, 2012. - 400 с. - ISBN 978-5-94774-939-7 .
  • Межмолекулярные взаимодействия; от двухатомных молекул до биополимеров / Пер. с англ. под ред.: Пюльман Б. - М. : Мир, 1981. - 592 с.
  • Дерягин Б. В., Чураев Н. В., Муллер В. М. Поверхностные силы. - М. : Наука, 1985. - 400 с.
  • Хобза П., Заградник Р. Межмолекулярные комплексы: Роль вандерваальсовых систем в физической химии и биодисциплинах. - М. : Мир, 1989. - 376 с.
  • Israelachvili J. Intermolecular and Surface Forces. - London: Academic Press, 1985-2004. - 450 с. - ISBN 0-12-375181-0 .

Схема эксперимента и пример полученного изображения.

Международный коллектив физиков из США и Китая при помощи сканирующего туннельного микроскопа впервые получил изображения монослоя атомов ксенона, на котором, как предполагают авторы, запечатлены ван дер Ваальсовы связи. Статья опубликована в The Journal of Physical Chemistry Letters .

Силы Ван-дер-Ваальса являются одними из самых слабых межатомных взаимодействий, однако их особенностью является то, что они проявляются между атомами любых элементов, независимо от их химического сродства. Благодаря этому силы Ван-дер-Ваальса существуют даже между атомами инертных газов, приводя к их слабой ассоциации и образованию конденсированных сред (жидких и твердых). Несмотря на то, что роль Ван-дер-Ваальсовых взаимодействий в различных процессах хорошо известна, их не удавалось запечатлеть в явном виде, так как до сих пор не ясно, сопутствует ли этим силам какое-либо явное изменение электронной плотности, которое можно «увидеть» при помощи тех или иных экспериментов.

Авторы новой работы исследовали слои атомов ксенона, адсорбированные на различных подложках - кристаллическом серебре и крупных органических молекулах. Для этого ученые использовали сканирующий туннельный микроскоп с серебряным зондом, на конце которого была адсорбирована одна молекула угарного газа (CO). В качестве сигнала служило изменение энергии колебаний этой молекулы в зависимости от ее окружения: так, когда зонд находился над условной линией, соединявшей два атома ксенона, энергия колебаний CO уменьшалась, а при перемещении его во «впадину» между тремя соседними атомами - увеличивалась.

По результатам проведенных исследований авторы получили карты с изображением адсорбированного ксенона. На них хорошо различимы атомы инертного газа, но, кроме того, видны и линии, соединяющие соседние атомы. Авторы трактуют эти данные как визуализацию Ван-дер-Ваальсовых взаимодействий, так как чувствительность CO-зонда позволяет различить даже такие слабые искажения в окружении.

Изображения, полученные для разупорядоченных атомов ксенона: (a-c) рельеф, полученный в режиме постоянного тока; (d-f) туннельный ток при постоянной высоте, а также его первая и вторая производные по разности потенциалов.

Изображение: Zhumin Han et al./ J. Phys. Chem. Lett.

Новая работа успела вызвать волну обсуждений в среде физиков, близких к этой области. Несмотря на то, что участники соглашаются с высоким экспериментальным уровнем проведенного исследования, не все принимают трактовку, предложенную авторами. В частности, в похожей работе авторы изучали, насколько хорошо можно визуализировать водородные связи при помощи атомно-силовой микроскопии с CO-зондом. В этой статье ученые пришли к выводу, что наблюдающиеся на картах линии между атомами возникают вследствие искажений при измерении силы, таким образом их нельзя считать визулизацией водородных связей.

Ван-дер-Ваальсовы взаимодействия играют роль не только на масштабах, близких к размеру атомов или молекул, как это происходит в случае конденсации инертных газов. Из-за того, что эти силы аддитивны, при взаимодействии двух более крупных тел (коллоидных частиц, например), вклады от всех атомов суммируются, что в итоге приводит к появлению взаимодействия, заметного уже не на нано-, а не микро-уровне. Так, в хорошо известной теории , описывающей устойчивость коллоидных растворов (к ним относятся всевозможные наночастицы, взвеси квантовых точек и тому подобное) именно Ван-дер-Ваальсовы взаимодействия играют одну из ключевых ролей и приводят к слипанию частиц и выпадению осадка, если систему дополнительно не стабилизировать.

Тарас Молотилин

Уравнение Ван-дер-Ваальса

В 1873 г. Ван-дер-Ваальс на основе молекулярной модели несжимаемых шаров диаметра D, притягивающих друг друга и притягиваемых друг другом, вывел свое удивительно простое уравнение. В реальном газе в результате молекулярного притяжения увеличивается кинетическое давление по сравнению с давлением в идеальном газе. Из самых общих соображений молекулярное притяжение пропорционально числу как притягивающих, так и притягиваемых молекул; Δp ~ N 2 . В результате молекулярного отталкивания свободный объем в реальном газе меньше, чем объем сосуда, занимаемого газом. Запрещенный объем вокруг каждой молекулы, в который не может попасть центр другой молекулы из-за взаимного отталкивания, Ван-дер-Ваальс оценил как объем сферы , где D - расстояние между центрами двух несжимаемых шаров диаметра D. Следовательно, полный запрещенный объем моля газа будет равен , т.е. равен учетверенному объему N a несжимаемых молекул.

Уравнение Клапейрона для идеального газа:

pV=N a kT (3.2);

Уравнение Ван-дер-Ваальса представляет собой уравнение Клапейрона, в которое введены перечисленные выше поправки на возросшее вследствие межмолекулярного взаимодействия кинетическое давление и уменьшенный реальный свободный объем:

или (3.3);

где a – постоянная, b4V 0 (V 0 – объем молекулы).

Если в качестве переменных P, V и T использовать их относительные значения P c =P/P k , T c =T/T k , V c =V/V k  (где P k , T k , V k – критические значения), то закон Ван-дер-Ваальса принимает вид универсального закона соответственных состояний:

– универсальная функция;

– универсальная постоянная.

Следствие из этого закона может быть сформулировано следующим образом: все вещества кипят при одних и тех же относительных давлениях и температурах. Или еще: относительные объемы всех веществ одинаковы при одних и тех же относительных давлениях и температурах. Уравнение Ван-дер-Ваальса можно записать и в другом виде:

(3.4);

т.е. представить в виде разложения потенциала притяжения по обратным степеням температуры, в котором учтен только первый член. Оправданием такого приближенияслужит предположение Ван-дер-Ваальса о дальнодействующем характере сил притяжения. В случае дальнодействия можно считать, что при переходе от одной конфигурации молекул к другой их потенциальная энергия не изменится, т.е. a = const вследствие того, что они находятся в среднем поле соседей с постоянной плотностью энергии .

Математическое и экспериментальное исследования этого уравнения показали, что поправки Ван-дер-Ваальса обладают глубоким физическим смыслом. Они качественно описывают не только изменения свойств системы, определяющих фазовый переход газ-жидкость, но и форму критической области. Кроме того, если силы притяжения нельзя рассматривать постоянными из-за близкодействия, то уравнение Ван-дер-Ваальса допускает следующее приближение с учетом члена 1/T 2 .

Ван-дер-Ваальс в 1873 году одним из первых указал на наличие нехимического межмолекулярного взаимодействия в аморфных состояниях вещества и разделил это взаимодействие на дальнодействующее притяжение и близкодействующее отталкивание. При этом он предложил до сих пор самую простую, но в тоже время достаточно точную в широком интервале температур и давлений, математическую модель для учета вышеперечисленных сил при расчете состояний реального газа. В связи с вышеуказанными обстоятельствами дальнодействующие силы межмолекулярного притяжения и близкодействующие силы межмолекулярного отталкивания назвали силами Ван-дер-Ваальса.

Как показывает квантовомеханический расчет энергия дальнодействующего межмолекулярного взаимодействия состоит из так называемой электростатической, и энергии возмущения второго порядка - индукционной и дисперсионной. Электростатическое взаимодействие возникает между дипольными моментами молекул, между ионами и диполями в растворах или сплавах. Для нейтральных молекул в электростатическом взаимодействии важно так называемое ориентационное взаимодействие постоянных дипольных моментов молекул.

Ориентационное, индукционное и дисперсионное взаимодействия - три важнейшие составляющие ван-дер-ваальсовых сил притяжения. Силы Ван-дер-Ваальса называют дальнодействующими, так как энергия ван-дер-ваальсового взаимодействия довольно медленно спадает с расстоянием и пропорциональны r -n .

Ориентационные взаимодействия Ван-дер-Ваальса

(эффект Кезома)

Рассмотрим возможные силы взаимодействия между двумя диполями.

Если два диполя расположены на одной прямой и одинаково ориентированы (рис. 3.4 а), то они притягиваются с силой обратно пропорциональной третьей степени расстояния между ними, установка диполей в "хвост".

Рис. 3.4. Расположение диполей.

Аналогичная сила действует между двумя противоположно направленными диполями, расположенными на параллельных прямых, на кратчайшем расстоянии друг от друга (рис. 3.4 б), установка диполей "один под другим" (антипараллельная установка диполей). В обоих случаях они ориентируются так, чтобы энергия системы стала минимальной (рис 3.4). Если диполи ориентированы не так, как показано на рис. 3.4 то между диполями кроме силы радиального взаимодействия (притяжение либо отталкивание) возникает крутящий момент.

В жидкостях и газах тепловое движение приводит ко всевозможным ориентациям молекул. При усреднении энергии взаимодействия по всем возможным ориентациям с учетом теплового движения, для жидкостей и газов расчет можно проводить по следующей формуле:

(3.5);

где s – расстояние между центрами диполей; µ 1 и µ 2 – крутящие моменты диполей.

Ориентационные взаимодействия Ван-дер-Ваальса играют определяющую роль в процессах электролитической диссоциации. Для наиболее полярных веществ связи Ван-дер-Ваальса ориентационной природы вносят наиболее существенный вклад в значения энергии и температуры плавления и сублимации (или кипения). Ориентационные взаимодействия Ван-дер-Ваальса, наряду с ван-дер-ваальсовыми индукционными взаимодействиями используются в абсорбционных и адсорбционных пылеочистных сооружениях, поэтому в качестве абсорбатов и адсотбатов в пылеочистных сооружениях практически всегда используются именно сильнополярные материалы .

Индукционные взаимодействия Ван-дер-Ваальса

(эффект Дебая)

Молекула, обладающая постоянным дипольным моментом, наводит в другой молекуле, неполярной или полярной, так называемый индуцированный дипольный момент. Величина индуцированного электрическим полем напряженности E дипольного момента  инд может быть представлена следующим рядом:  инд = E+E 2 + . Для электрических полей малой напряженности можно пренебречь всеми членами ряда, кроме первого, это приближение можно сделать для пары индукционно взаимодействующих диполей.  инд = E, где  - поляризуемость молекулы. Индуцированный дипольный момент имеет то же направление, что и линии напряженности электрического поля постоянного диполя вызвавшего появление наведенного дипольного момента у поляризуемой молекулы или радикала в точке нахождения поляризуемой молекулы (или соответственно радикала). Взаимодействие постоянного диполя одной молекулы (радикала, сложного иона) и наведенного им диполя второй молекулы (или вообще группы атомов) понижает потенциальную энергию системы из двух молекул и упрочняет систему .

Если учесть, что наводящая индуцированный дипольный момент молекула сама обладает поляризуемостью, расчет можно проводить по следующей формуле:

(3.6);

Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры. Последнее связано с тем, что ориентация наведенного дипольного момента не может быть произвольной, она однозначно определяется направлением и положением наводящего диполя в пространстве.

Величина энергиииндукционного взаимодействия U инд тем значительнее, чем выше поляризуемость молекул. Индукционное взаимодействие наблюдается: при образовании гидратов благородных газов, в растворах полярных веществ, в неполярных растворителях (например, ацетона в тэтрахлорметане) и т.п., но существенно только для молекул со значительной поляризуемостью; к ним, в первую очередь, относятся молекулы с сопряженными связями.

Индукционное взаимодействие не аддитивно. Это становится ясным, если рассмотреть неполярную частицу в поле двух симметрично расположенных диполей. Каждый из них, действуя сам, вызвал бы индукционный эффект, но совместное их действие взаимно уравновешивается, в результате чего дипольный момент у неполярной частицы не наводится, а следовательно энергия системы в рассматриваемом случае индукционным взаимодействием не понижается.

В следствие нераспространенности легко поляризуемых молекул и неаддитивности индукционных взаимодействий эффект Дебая никогда не бывает доминирующим по сравнению с эффектом Кезома (ориентационные взаимодействия) и с эффектом Лондона.

Дисперсионные взаимодействия Ван-дер-Ваальса

(эффект Лондона)

Существуют, однако, такие молекулы у которых нет не только дипольного электрического момента, но и электрических моментов более высокого порядка; это - сферически симметричные молекулы, прежде всего молекулы идеальных газов. Однако и благородные газы при охлаждении сжижаются, а при дальнейшем охлаждении (гелий - только под повышенным по сравнению с атмосферным давлением) кристаллизуются. Силы, приводящие к конденсации идеальных газов, называются дисперсионными ван-дер-ваальсовыми силами. Дисперсионные взаимодействия Ван-дер-Ваальса играют большую роль при взаимодействии и между всеми другими молекулами, без исключений.

Решение уравнения Шредингера для системы из двух молекул методом возмущений указывает на существование электростатического, индукционного и дисперсионного взаимодействий. Каждый из указанных эффектов имеет строгое квантово-механическое определение, но если ориентационный и индукционный эффекты можно понять также на основе представлений электростатики, то дисперсионное взаимодействие объяснимо только на основе квантовой механики .

Грубое модельное представление о дисперсионном взаимодействии между двумя атомами благородного газа можно составить, рассматривая протоны ядра атома и движущиеся вокруг ядра электроны как положительный и отрицательный полюсы вращающихся вокруг центра атома мгновенных электрических диполей.

Поскольку направление этих диполей меняется с частотой 10 15  циклов в секунду, вследствие чего атом не обладает дипольным моментом постоянного направления, в среднем по времени его дипольный момент равен нулю. Однако, при встрече двух атомов их мгновенные дипольные моменты ориентируются друг относительно друга, и их направления изменяются "в такт". Эта корреляция между направлениями мгновенных дипольных моментов атомов (или обладающих электронами ионов) уменьшает потенциальную энергию системы на величину, называемую энергией дисперсионного взаимодействия (или величиной эффекта Лондона).

Сущность эффекта Лондона заключается в том, что электроны в атомах и молекулах можно уподобить колеблющимся около ядра частицам – осцилляторам. Любой осциллятор, согласно современным квантовомеханическим представлениям, даже при абсолютном нуле температуры совершает так называемые нулевые колебания с энергией =h 0 /2 , где  0 - частота колебаний осциллятора.

(3.7);

Энергия дисперсионного взаимодействия, так же как ориентационного и индукционного взаимодействий, пары частиц обратно пропорциональна шестой степени расстояния; однако же для приближенного расчета теплоты испарения жидкости следует ввести поправочный коэффициент, учитывающий координационное число и другие факторы, т.е. параметры взаимодействия частицы с ее окружением.

Особенностью дисперсионного взаимодействия является его всеобщность – во всех молекулах есть движущиеся электроны, поэтому дисперсионное взаимодействие существенно для всех без исключения молекул, а для неполярных молекул эффект Лондона - главный и практически единственный источник сил Ван-дер-Ваальса (если расплав или кристалл неполярного вещества – недостаточно очищен от полярных примесей, то индукционное взаимодействие там может тоже быть представлено, но его вклад в этом случае – пренебрежимо мал). Дисперсионное взаимодействие вносит также определенный вклад в энергию связи ионов в молекулах и в ионных кристаллах.

Дисперсионные взаимодействия играют основную роль в межмолекулярных взаимодействиях подавляющего большинства веществ. Они также формируют гидрофобные оболочки клеточных органоидов и мембран. За счет гидрофобных (в основном дисперсионные, а также, отчасти, индукционные) связей неполярные участки радикалов аминокислот в структуре белка и радикалов нуклиотидов в структуре нуклеиновых кислот, радикалы липидов в липидных оболочках и т.п. располагаются упорядоченно; а не создают неопределенность положения в молекуле и органоиде в целом, свободно изгибаясь и мешая работе организма .

Ван-дер-ваальсово отталкивание

(эффект Паули)

Выше были описаны три основных типа дальнодействующих сил ответственных за ван-дер-ваальсовое притяжение между молекулами: эффекты Лондона, Кезома и Дебая. При сближении молекул (или их частей), наряду с вышеизложенными дальнодействующими силами, заметными становятся также короткодействующие силы, возникающие при перекрывании электронных облаков молекул (или частей молекул). На больших расстояниях эти силы несущественны, так как электронная плотность спадает практически до нуля уже на отдалении порядка 3Å от ядра атома.

Перекрывание электронных облаков может привести ко двоякого рода результатам: если у частиц имеются незаполненные целиком или низко лежащие свободные молекулярные орбитали, могут образоваться донорно-акцепторные, координационные, межмолекулярные и другие химические соединения; короткодействующие силы другого вида – силы ван-дер-ваальсового отталкивания, возникающие при перекрывании полностью заполненных атомных или молекулярных электронных оболочек, связанных с проявлением принципа Паули.

Принцип Паули (принцип исключения Паули, запрет Паули) играет фундаментальную роль в поведении многоэлектронных систем. Согласно принципу Паули на одной спин-орбитали не может находиться двух электронов с одинаковым набором четырех квантовых чисел. Принцип исключения Паули относится к основным законам природы и выражает одно из важнейших свойств не только электронов, но и всех других обладающих полуцелыми значениями спинового квантового числа микрочастиц (в том числе: протонов, нейтронов, многих других элементарных частиц, а также многих атомных ядер).

Силы ван-дер-ваальсового отталкивания – важнейшая компонента межмолекулярного взаимодействия. На коротких расстояниях они значительны и возрастают при сближении очень быстро. Энергию межмолекулярного отталкивания аппроксимируют обычно следующим выражением:

(3.8);

A и ρ – константы, определяемые при столкновении атомов инертных газов и простейших молекул .



Случайные статьи

Вверх